Two TFIIIA activities regulate expression of the Xenopus 5S RNA gene families. 1989

J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Immunoblotting experiments with polyclonal and monoclonal anti-transcription factor IIIA (TFIIIA) antibodies reveal different electrophoretic forms of TFIIIA in extracts from immature and mature oocytes of Xenopus laevis. The well-characterized 39-kD TFIIIA species is present in approximately 10(12) copies per cell in stage I-III previtellogenic oocytes and declines in abundance by 10- to 20-fold during oogenesis. An immunologically related protein of apparent molecular mass of 42 kD is present at 2-4% of the level of 39-kD TFIIIA in immature oocytes, and the level of this protein increases dramatically during oogenesis. Both the 39- and 42-kD proteins are complexed with 5S RNA in 7S ribonucleoprotein (RNP) particles. High-level transcription of the oocyte-type 5S genes in vitro requires 39-kD immature oocyte TFIIIA, whereas both 39-kD TFIIIA and the mature oocyte TFIIIA species of 42 kD support somatic-type 5S transcription. TFIIIA of 42 kD does not support oocyte-type 5S transcription in a fractionated transcription system derived from mature oocytes. Both proteins, however, bind the oocyte-type and somatic-type genes with comparable affinities and exhibit similar DNase footprints on both genes. These results suggest a model for the developmental regulation of 5S RNA gene transcription where 42-kD TFIIIA serves as an activator of somatic-type 5S transcription and as a repressor of oocyte-type transcription during early embryogenesis.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
October 1991, Genes & development,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
November 1987, Molecular and cellular biology,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
July 1992, Molecular and cellular biology,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
June 1994, Biochemistry,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
July 1990, Proceedings of the National Academy of Sciences of the United States of America,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
February 1991, Nucleic acids research,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
March 1991, Developmental biology,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
December 1984, Cell,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
January 1987, Molecular and cellular biology,
J Blanco, and L Millstein, and M A Razik, and S Dilworth, and C Cote, and J Gottesfeld
October 1990, Molecular and cellular biology,
Copied contents to your clipboard!