Dietary restriction increases protein acetylation in the livers of aged rats. 2013

Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

BACKGROUND Dietary restriction (DR) is a well-established biological method for lifespan extension in various organisms by delaying the progression of age-related disorders. With regard to its molecular mechanisms, a family of NAD-dependent protein deacetylases, such as sirtuins, is considered to mediate DR-induced lifespan extension in some lower organisms. Furthermore, the effects of DR on sirtuins (e.g. SIRT1, SIRT2, SIRT3, and SIRT5) have also been reported in mammals. However, the relationship between sirtuins and DR-associated longevity in mammals is still not clear. In addition, ageing and DR-associated changes in cellular protein acetylation have not been fully elucidated, especially in DR-aged animals. OBJECTIVE We aimed to elucidate the effect of ageing and DR on cellular protein acetylation in young and aged rats. METHODS Fischer 344 rats were subjected to DR for 7.5 or 25.5 months from 1.5 months of age. Protein acetylation status in tissues was analyzed by Western blotting, subcellular fractionation, and immuno-pull-down assay. We also analyzed the quantitative changes in some related deacetylases and an acetyltransferase. RESULTS Acetylation of multiple proteins in the liver of young and aged rats decreased slightly with ageing and increased markedly under DR. The results of subcellular fractionation revealed that the DR-induced increase in protein acetylation was more prominent in extranuclear proteins than in nuclear proteins, indicating that acetylation is global, but protein-specific. This was further confirmed in the results of immune-pull-down assays for mitochondrial acetylated proteins. Cellular protein acetylation is regulated by multiple factors, including various deacetylases and acetyltransferases. With regard to the possible mechanisms of DR-induced increases in protein acetylation, we observed that DR increased SIRT3 expression in the liver of young and aged rats. Expression of the mitochondrial protein acetyltransferase GCN5L1 significantly increased with ageing but did not respond to DR. CONCLUSIONS The increased acetylation of extranuclear proteins may be involved in DR-induced anti-ageing effects including longevity. However, the mechanisms underlying the changes in protein acetylation might not result from quantitative changes in mitochondrial sirtuins and the mitochondrial protein acetyltransferase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
October 2022, Physiology & behavior,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
July 1993, Journal of gerontology,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
January 2015, Mechanisms of ageing and development,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
January 1995, Annals of nutrition & metabolism,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
January 2020, Journal of nutritional science and vitaminology,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
March 2017, Biology letters,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
January 1983, Neurobiology of aging,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
September 2022, The FEBS journal,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
July 1985, The Journal of nutrition,
Akihiro Nakamura, and Kyojiro Kawakami, and Fuyuki Kametani, and Sataro Goto
September 2003, Pediatric research,
Copied contents to your clipboard!