Maternal Protein Restriction Increases Autophagy in the Pancreas of Newborn Rats. 2020

Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
Department of Pediatrics, Shengjing Hospital of China Medical University.

A maternal low-protein diet increases the susceptibility of offspring to type 2 diabetes by inducing alterations in β cell mass and function. However, the mechanism of this pancreas injury remains poorly understood. The present study aimed to assess whether autophagy is altered in the pancreas of intrauterine growth restriction (IUGR). In addition, the autophagy associated mammalian target of rapamycin complex 1 (mTORC1) signaling and endoplasmic reticulum (ER) stress were further evaluated in the pancreas. The maternal protein restriction IUGR rat model was established as the IUGR group, and assessed alongside normal newborn rats (CON group). Then, the levels of autophagy markers were assessed by transmission electron microscopy, immunofluorescence, quantitative real-time PCR (qRT-PCR) and Western blot, respectively. In addition, mTORC1 signaling effectors were evaluated by Western blot; ER stress was quantitated by immunohistochemistry, qRT-PCR and Western blotting. Compared with the control group, the IUGR group showed increased levels of the autophagy markers LC3II and Beclin1, with decreased mTORC1 signaling activity. In addition, ER stress was confirmed in β cells of the IUGR group. These findings provided evidence that maternal protein restriction enhances autophagy in newborn pancreas, where ER stress was also induced in β cells, which might effect the pancreas development.

UI MeSH Term Description Entries
D008297 Male Males
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D005317 Fetal Growth Retardation Failure of a FETUS to attain expected GROWTH. Growth Retardation, Intrauterine,Intrauterine Growth Retardation,Fetal Growth Restriction,Intrauterine Growth Restriction

Related Publications

Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
September 2003, Pediatric research,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
February 1969, The Indian journal of medical research,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
February 1968, The Journal of nutrition,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
April 2001, Pediatric research,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
January 2013, Gerontology,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
August 2016, Nutrition research (New York, N.Y.),
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
October 2022, Physiology & behavior,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
March 2016, Nephrology (Carlton, Vic.),
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
March 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
Min Yang, and Dan Zhang, and Yanchao Li, and Ying Xin
August 2015, Obesity (Silver Spring, Md.),
Copied contents to your clipboard!