Cobalt-cytochrome c. II. Magnetic resonance spectra and conformational transitions. 1975

L C Dickinson, and J C Chien

Between pH approximately 4 and 10 cobaltocytochrome c (Cocyt-c) gives an electron paramagnetic resonance (EPR) spectrum with g parallel = 2.035, g the perpendicular = 2.223, CoA PARALLEL = 61.4 G, CoA the perpendicular = 49.8 G, NA parallel = 15.3 G, and NA THE PERPENDICULAR = 12.5 G. Comparisons with the EPR spectra of deoxycobaltomyoglobin, deoxycobaltohemoglobin, and model compounds and together with other evidence showed cobaltocytochrome c to have Met-80 and His-18 as its axial ligands. The protons of these ligands are seen as resonances shifted by the ring-current field of the porphyrin in the 300-MHZ 1H nuclear magnetic resonance (NMR) spectra of cobalticytochrome c (Cocyt-c+). The methyl and gamma-methylene protons of Met-80 in this molecule occupy positions with respect to heme c which are somewhat different from those in ferrocytochrome c. The 1H NMR spectra also showed that the methyl groups of Leu-32, Ile-75, Thr-63, thioether bridges, and the porphyrin ring in the cobalt protein are in the same state as in native enzyme; the same is also true for Tyr-59, His-26, and His-33 and also possibly Tyr-67, Tyr-74, and Phe-82. Above pH 11, Cocyt-c is converted to a five-coordinated form having g parallel = 2.026, g the perpendicular = 2.325, CoA parallel = 80 G, CoA the perpendicular approximately 10 G, NA parallel = 17.5 G, and NA the perpendicular not resolved. Below pH 1.0 the EPR spectrum of Cocyt-c is also five-coordinated with g parallel = 2.014, g the perpendicular = 2.359, CoA parallel = 93.8 G, and CoA the perpendicular = 38.8 G. The axial ligands in the alkaline and the acidic forms of Cocyt-c are His-18 and Met-80, respectively. New prominent proton resonance peaks are observed in cobalt-cytochrome c which are either absent or weak in native cytochrome c. These are situated at 3.0, 1.7, and 1.44 ppm, attributable, respectively, to the epsilon-CH2, DELTA-CH2 + beta-CH2, and gamma-CH2 of lysyl residues in random-coil-peptides. From the areas of these peaks, it is estimated that one-two lysyl residues in Cocyt-c have been modified; four-five lysyl residues in Cocyt-c+ have been modified. These alterations of surface charged groups are probably responsible for the lowered reactivity of Cocyt-c with cytochrome oxidase and the lack of reactivity of Cocyt-c+ with several cytochrome reductase systems.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic

Related Publications

L C Dickinson, and J C Chien
August 1985, Biochemistry,
L C Dickinson, and J C Chien
June 1976, Biochemical and biophysical research communications,
L C Dickinson, and J C Chien
August 1972, Biochimica et biophysica acta,
L C Dickinson, and J C Chien
November 1980, Biochimica et biophysica acta,
L C Dickinson, and J C Chien
January 1976, Analytical chemistry,
L C Dickinson, and J C Chien
November 1974, Proceedings of the National Academy of Sciences of the United States of America,
L C Dickinson, and J C Chien
April 1975, Biochemistry,
L C Dickinson, and J C Chien
September 1972, Biochemical and biophysical research communications,
Copied contents to your clipboard!