Effects of kainate on the excitability of rat hippocampal neurones. 1990

E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
INSERM U. 029, Paris, France.

Intracellular recordings from CA1 pyramidal neurones of the rat hippocampal slice preparation were used to study changes in neuronal excitability induced by the excitatory amino acid analogues kainate (KA) and N-methyl-D-aspartate (NMDA). Low concentrations of bath-applied KA (50-200 nM) or NMDA (1-3 microM) elicited a relatively small membrane depolarization and increased the number of spikes fired by a constant current pulse. The spike after-hyperpolarization (AHP) was depressed by KA but enhanced by NMDA. After blockade of the voltage-sensitive Na+ conductances with tetrodotoxin, intracellularly applied current pulses elicited Ca2+ spikes. Whereas NMDA always increased the duration (and number) of Ca2+ spikes and of their AHP, KA conversely reduced these spikes and (in almost half of the cells tested) the late phase of their AHP. When Ba2+ was used to replace extracellular Ca2+, prolonged plateau potentials developed and were also blocked by KA. NMDA had no effect on Ba2(+)-dependent responses. These results suggest that low concentrations of KA profoundly modified the electroresponsiveness of CA1 neurones perhaps by depressing a Ca2(+)-dependent K+ conductance mechanism responsible for dampening the excitability of these cells.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
March 1987, The Journal of physiology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
August 1998, The Journal of physiology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
April 1991, The Journal of physiology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
April 2008, Molecular membrane biology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
March 1992, European journal of pharmacology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
January 1990, Pflugers Archiv : European journal of physiology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
December 1992, The Journal of physiology,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
July 1984, Brain research bulletin,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
January 1988, Neuropeptides,
E Cherubini, and C Rovira, and Y Ben-Ari, and A Nistri
May 2000, The Journal of physiology,
Copied contents to your clipboard!