Kainate induces an intracellular Na+-activated current in cultured embryonic rat hippocampal neurones. 1998

Q Y Liu, and A E Schaffner, and J L Barker
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. liuqy@codon@nih.gov

1. In embryonic rat hippocampal neurones cultured for < 3 days, kainate induced an inward current at negative potentials that recovered to baseline levels immediately upon termination of agonist application. However, in neurones cultured for longer, the kainate-induced current was often followed by a long-lasting inward current that slowly recovered to baseline levels. The amplitude of the delayed current (Idelay) triggered by kainate was positively related both to the duration of application at constant agonist concentration and to concentration at constant application duration. 2. Idelay could last for several minutes and was accompanied by a conductance increase, which closely paralleled current amplitude. Depression of the kainate-induced current response at receptor level with CNQX or at ionic level with Na+-free solution eliminated Idelay. However, when applied during Idelay neither CNQX nor Na+-free solution had any effect on Idelay. Li+ effected the same response as Na+ in mediating kainate-induced Idelay. 3. GABA-activated Cl- current, which was associated with the same amount of inwardly directed charge flow at the same potential as that induced by kainate, did not trigger a long-lasting delayed current. 4. Idelay depended on the existence of extracellular K+ and its amplitude increased with the increase in K+ concentration. Neither applying Cl-- or Ca2+-free solutions nor increasing intracellular Ca2+ buffering speed and capacity altered Idelay. Exposure to the specific KCa channel blockers apamin and charybdotoxin also failed to alter Idelay. However, Idelay could be blocked by Cs+, Ba2+ and high concentrations of 4-aminopyridine (4-AP) and TEA. 5. Inside-out excised patch-clamp recordings revealed that low density or highly clustered Na+-activated K+ channels were expressed in the cell bodies of cultured embryonic rat hippocampal neurones. These could be the elementary channels underlying Idelay.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Q Y Liu, and A E Schaffner, and J L Barker
March 1997, The Journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
March 1989, The Journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
April 1991, The Journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
December 1998, Pflugers Archiv : European journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
January 2000, Molecular membrane biology,
Q Y Liu, and A E Schaffner, and J L Barker
January 1990, Pflugers Archiv : European journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
September 1997, The Journal of physiology,
Q Y Liu, and A E Schaffner, and J L Barker
January 1990, Epilepsy research,
Q Y Liu, and A E Schaffner, and J L Barker
September 1998, The Journal of physiology,
Copied contents to your clipboard!