Palmitate induces autophagy in pancreatic β-cells via endoplasmic reticulum stress and its downstream JNK pathway. 2013

Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, P.R. China.

Endoplasmic reticulum (ER) stress and autophagy have both been reported to be associated with lipotoxicity in β-cells, yet the relationship between them has not been fully clarified. In the present study, we tested the hypothesis that the ER stress-autophagic pathway in β-cells is a downstream pathway activated following saturated fatty acid treatment. Mouse insulinoma (MIN6) β-cells were treated with either palmitate or thapsigargin (TG) with or without various inhibitors. The results indicated that palmitate strongly enhanced the protein expression of microtubule-associated protein 1 light chain 3 (LC3)-II. Furthermore, the expression levels of ER stress markers, BiP and CHOP, and phosphorylation levels of JNK were increased after palmitate treatment. In addition, palmitate-induced autophagy was blocked by 500 µM of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or 20 µM JNK inhibitor SP600125. In turn, the phosphorylation of Akt (Ser473) was also downregulated by palmitate, while the levels of insulin receptor β (IRβ) were not reduced. A further increase in LC3-II levels was observed in cells treated with both palmitate and 50 µM PI3K/Akt inhibitor LY294002 compared with cells treated with palmitate alone. Palmitate-induced phospho-Akt (Ser473) downregulation was also inhibited by TUDCA or SP600125. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA, 5 mM) for 1 h increased the expression of ER stress markers, and enhanced cell injuries caused by 0.1 µM TG, including decreased cell viability and insulin secretion. Palmitate induces autophagy in pancreatic β-cells possibly through activation of ER stress and its downstream JNK pathway. Palmitate-induced autophagy may protect β-cells against cell injuries caused by ER stress.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
March 2022, International journal of molecular sciences,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
January 2023, Phytotherapy research : PTR,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
February 2019, Cell death & disease,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
March 2018, Endocrinology and metabolism (Seoul, Korea),
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
November 2017, Molecular medicine reports,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
January 2024, Cell death & disease,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
February 2012, Experimental & molecular medicine,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
March 2022, Animals : an open access journal from MDPI,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
October 2010, Biochemical and biophysical research communications,
Ying-Ying Chen, and Lian-Qing Sun, and Bao-An Wang, and Xiao-Man Zou, and Yi-Ming Mu, and Ju-Ming Lu
August 2021, Molecules (Basel, Switzerland),
Copied contents to your clipboard!