Palmitate induces myocardial lipotoxic injury via the endoplasmic reticulum stress‑mediated apoptosis pathway. 2017

Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.

Increased free fatty acids in cardiomyocytes induce myocardial lipotoxic injury, but the underlying mechanisms are not well understood. Therefore, the aim of the present study was to explore the role of the endoplasmic reticulum (ER) stress‑mediated apoptosis pathway in palmitate (PA)‑induced cardiomyocyte lipotoxicity. H9c2 cells were treated with various doses (100, 200 and 400 µM) of PA to mimic cardiomyocyte lipotoxicity in vitro. Oil Red O staining was used to determine the accumulation of intracellular lipids. An MTT assay was used to determine the cell viability. Lactate dehydrogenase (LDH) activity was used to measure the injury of H9c2 cells. Flow cytometry analysis was used to detect apoptosis. Western blotting was used to evaluate the expression change of ER stress‑mediated apoptosis pathway proteins, including 78 kDa glucose‑regulated protein (GRP78), eukaryotic initiation factor 2 α (eIF2α), protein kinase R‑like endoplasmic reticulum kinase (PERK), C/EBP homologous protein (CHOP) and cleaved caspase‑12. The results demonstrated that various doses of PA promoted excessive lipid deposition in cardiomyocytes and resulted in decreased cell viability, and increased the LDH activity and apoptosis rate in a dose‑dependent manner. Furthermore, the expression of GRP78, a marker of ER stress, and the phosphorylation of eIF2α and PERK were increased following treatment with PA. Notably, the levels of CHOP and cleaved caspase‑12, critical regulators of ER stress‑mediated apoptosis pathway, were also elevated, and this effect was reversed by a specific ER stress inhibitor (4‑phenyl butyric acid). In conclusion, the results of the current study demonstrated that PA induces myocardial lipotoxic injury by triggering ER stress and the ER stress‑mediated apoptosis pathway.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D010654 Phenylbutyrates Derivatives of 4-phenylbutyric acid, including its salts and esters.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000091342 Endoplasmic Reticulum Chaperone BiP An ENDOPLASMIC RETICULUM specific chaperone of the HSP70 family. They are involved in folding and oligomerization of secreted and membrane proteins and ENDOPLASMIC RETICULUM STRESS related UNFOLDED PROTEIN RESPONSE. Binding-immunoglobulin Protein Molecular Chaperone,Glucose Regulated Protein 78 kDa,Grp78,HSPA5 Protein,Heat-Shock Protein 5,Molecular Chaperone BiP,Molecular Chaperone GRP78,BiP, Molecular Chaperone,Binding immunoglobulin Protein Molecular Chaperone,GRP78, Molecular Chaperone,Heat Shock Protein 5,Protein, HSPA5
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015852 Eukaryotic Initiation Factor-2 Eukaryotic initiation factor of protein synthesis. In higher eukaryotes the factor consists of three subunits: alpha, beta, and gamma. As initiation proceeds, eIF-2 forms a ternary complex with Met-tRNAi and GTP. EIF-2,Peptide Initiation Factor EIF-2,EIF-2 alpha,EIF-2 beta,EIF-2 gamma,EIF-2alpha,EIF-2beta,EIF-2gamma,EIF2,Eukaryotic Initiation Factor-2, alpha Subunit,Eukaryotic Initiation Factor-2, beta Subunit,Eukaryotic Initiation Factor-2, gamma Subunit,Eukaryotic Peptide Initiation Factor-2,EIF 2,EIF 2 alpha,EIF 2 beta,EIF 2 gamma,EIF 2alpha,EIF 2beta,EIF 2gamma,Eukaryotic Initiation Factor 2,Eukaryotic Initiation Factor 2, alpha Subunit,Eukaryotic Initiation Factor 2, beta Subunit,Eukaryotic Initiation Factor 2, gamma Subunit,Eukaryotic Peptide Initiation Factor 2,Initiation Factor-2, Eukaryotic,Peptide Initiation Factor EIF 2

Related Publications

Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
April 2015, Toxicological sciences : an official journal of the Society of Toxicology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
December 2015, Experimental and molecular pathology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
May 2015, Experimental and molecular pathology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
August 2016, Environmental toxicology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
August 2022, Environmental toxicology and pharmacology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
September 2023, In vitro cellular & developmental biology. Animal,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
June 2017, Journal of cellular and molecular medicine,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
September 2020, Food science & nutrition,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
January 2020, International journal of clinical and experimental pathology,
Lu Zou, and Xiaoyan Li, and Nan Wu, and Pengyu Jia, and Chunting Liu, and Dalin Jia
December 2013, International journal of molecular medicine,
Copied contents to your clipboard!