Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. 1986

S C Sansom, and R G O'Neil

The effects of long-term mineralocorticoid (deoxycorticosterone acetate, DOCA) elevation for 9-16 days on the active and passive transport properties of the basolateral cell membrane of rabbit cortical collecting ducts were assessed using microelectrode techniques. It was found that both the transepithelial membrane voltage (Vte) and basolateral membrane voltage (Vb) hyperpolarized and the basolateral membrane conductance (Gb) increased on chronic elevation of mineralocorticoid levels. Barium (5 mM) addition to the bathing solution effectively blocked an induced K+ current across the basolateral cell membrane without an immediate affect on the other barriers. Therefore Ba2+ was used to quantitate the basolateral cell membrane K+ conductance (GbK). It was found that GbK increased from 1.0 +/- 0.2 mS X cm-2 (controls) to 3.7 +/- 1.0 mS X cm-2 in DOCA-treated animals. The basolateral membrane electrogenic pump current (Ibact) was quantitated from the change in the basolateral membrane equivalent emf on addition of either ouabain (0.1 mM) to the bath or of amiloride (50 microM) to the perfusate. There was a large increase in Ibact from 32 microA X cm-2 in controls to 195 microA X cm-2 in the DOCA-treated group. In addition, the estimated Na+-to-K+ coupling ratio of the Na+ pump was observed to increase from 1.6 to 1.0 in the control group to 3.2 to 1.0 in the DOCA-treated group. The estimated basolateral membrane passive K+ current (IbK) increased from a value that was not significantly different from 0 in controls to approximately -45 microA X cm-2 (from bath to cell) in the DOCA-treated group. These findings support a model whereby mineralocorticoids induce an increase in electrogenic Na+ pump activity in response to chronically elevated rates of Na+ transport. This results in a hyperpolarization of Vb, which is well above EbK, thereby resulting in a net driving force for K+ uptake into the cell, bringing about an increased rate of K+ secretion.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003900 Desoxycorticosterone A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE 21-Hydroxyprogesterone,Cortexone,Deoxycorticosterone,Desoxycortone,11-Decorticosterone,21-Hydroxy-4-pregnene-3,20-dione,11 Decorticosterone,21 Hydroxy 4 pregnene 3,20 dione,21 Hydroxyprogesterone

Related Publications

S C Sansom, and R G O'Neil
September 1993, Pflugers Archiv : European journal of physiology,
S C Sansom, and R G O'Neil
October 1995, Kidney international,
S C Sansom, and R G O'Neil
February 2000, American journal of physiology. Renal physiology,
S C Sansom, and R G O'Neil
August 1993, Pflugers Archiv : European journal of physiology,
S C Sansom, and R G O'Neil
July 1990, The American journal of physiology,
S C Sansom, and R G O'Neil
July 1994, The American journal of physiology,
S C Sansom, and R G O'Neil
May 1996, The American journal of physiology,
S C Sansom, and R G O'Neil
February 1992, Kidney international,
S C Sansom, and R G O'Neil
January 1993, Nephron,
S C Sansom, and R G O'Neil
August 2012, American journal of physiology. Renal physiology,
Copied contents to your clipboard!