Two distinct calcium-activated potassium currents in larval muscle fibres of Drosophila melanogaster. 1986

M Gho, and A Mallart

The non-synaptic membrane currents of muscle fibres have been studied in late embryogenesis of Drosophila melanogaster using the voltage-clamp technique in wild-type and Shaker mutant third instar larvae. Five currents were found in the wild type muscle membrane at this embryonic stage: one fast inward Ca current (ICa), two fast outward K currents (IA and IAcd) and two slow outward K currents (IK and IC). IAcd and IC are Ca-dependent. Several procedures were used to separate IAcd from IA: IAcd is present in Shaker mutants which are characterized by the absence of IA (Salkoff and Wyman 1981); IAcd, but not IA, is suppressed by Co2+ (10 mM) or La3+ (1 mM); IAcd shows steady-state inactivation at more positive potentials than IA; IAcd, unlike IA, is 3,4-diaminopyridine (3,4-DAP) resistant. Furthermore, tetraethylammonium (TEA, 20 mM) which is known to be uneffective on IA, blocks IAcd. IAcd could not be triggered by using strontium or barium as calcium substitutes. By partial substitution of Ca by Ba or Sr ions, it was found that Ba, but not Sr, blocks the IAcd channel. A non-inactivating, TEA sensitive, Ca-dependent K current (IC), which gave N-shaped I-V plots, could be separated from IK by using Ca-channel blockers. IC and IK activate at membrane potentials of about -25 mV and -10 mV, respectively. The participation of IAcd and IC to membrane electrophysiology is discussed.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Gho, and A Mallart
February 2004, The Journal of experimental biology,
M Gho, and A Mallart
April 1987, The Journal of physiology,
M Gho, and A Mallart
February 1982, The Journal of physiology,
M Gho, and A Mallart
May 2000, Archives of insect biochemistry and physiology,
M Gho, and A Mallart
September 1990, The Journal of experimental biology,
M Gho, and A Mallart
September 1980, The Journal of pharmacology and experimental therapeutics,
M Gho, and A Mallart
October 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Gho, and A Mallart
September 2000, Clinical and experimental pharmacology & physiology,
M Gho, and A Mallart
February 2009, Acta physiologica (Oxford, England),
Copied contents to your clipboard!