Calcium and potassium currents in muscle fibres of an insect (Carausius morosus). 1982

F M Ashcroft, and P R Stanfield

1. A three electrode voltage-clamp was used to investigate membrane currents in the skeletal muscle fibres of the stick insect, Carausius morosus. Contraction was blocked by hypertonic solutions. 2. Membrane currents elicited by step depolarizations consisted of an inward current, an early outward current and a delayed outward current. 3. The reversal potential of the delayed outward current did not change when SO4(2-) was substituted for Cl-, but shifted by 14.1 mV when [K]0 was increased from 20 mM to 40 mM in SO4(2-) solution, suggesting that the delayed current is carried by K+. Both early and delayed outward currents were substantially reduced by 120 mM-tetraethylammonium (TEA) ions. 4. The small size of the shift in the reversal potential of the delayed outward current with increased pulse duration suggests that the delayed current measured flows mainly across the surface membrane. 5. Increasing [Ca]o made the apparent reversal potential for the inward current (120 mM-TEA Ringer) more positive and increased the size of the maximum inward current. However, Ca-currents showed saturation with increasing [Ca]o, indicating that there is a site to which Ca ions bind during their passage through the membrane. The dissociation constant of this site was 7.3 mM at 0 mV and was voltage-dependent. 6. Inward currents were blocked by 1 mM-La3+ or Cd2+, or by substitution of Co2+ or Ni2+ for Mg2+. Strontium and barium were able to permeate the channel but Na+ and Mg2+ appear impermeant. 7. As expected from the low intracellular Ca concentration, the instantaneous current-voltage relation of the Ca current rectified strongly in the inward direction. 8. Both constant field theory and the simplest, single site, Eyring rate theory model predict the rectification of the instantaneous current-voltage relation. The rate theory model also predicts saturation of the Ca current with [Ca]o.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

F M Ashcroft, and P R Stanfield
May 2010, Journal of neurophysiology,
F M Ashcroft, and P R Stanfield
September 1965, The Journal of cell biology,
F M Ashcroft, and P R Stanfield
June 2018, Journal of proteome research,
F M Ashcroft, and P R Stanfield
August 2009, Journal of neurophysiology,
F M Ashcroft, and P R Stanfield
October 1979, The Journal of experimental biology,
F M Ashcroft, and P R Stanfield
May 1970, Journal of insect physiology,
F M Ashcroft, and P R Stanfield
January 1977, Biological cybernetics,
F M Ashcroft, and P R Stanfield
April 1950, Archives internationales de physiologie,
F M Ashcroft, and P R Stanfield
July 1966, Nature,
F M Ashcroft, and P R Stanfield
November 1986, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!