Motor cortical epileptic foci in vivo: actions of a calcium channel blocker on paroxysmal neuronal depolarizations. 1987

O W Witte, and E J Speckmann, and J Walden

Focal epileptiform activity was induced by local application of penicillin to the surface of the rat motor cortex. Neurons located within the epileptic focus displayed typical paroxysmal depolarization shifts (PDS). The participation of membrane calcium currents in the generation of PDS was examined by injecting the quaternized calcium entry blocker D890 into single neurons by iontophoresis or by pressure pulses. After intracellular injections of D890, PDS were depressed in amplitude by up to 55%. In a few cases the depression of PDS following intracellular application of D890 was preceded by a transient increase. Similar increases of PDS amplitude were obtained by injections of the calcium chelator EGTA. Control experiments in preparations without epileptic activity revealed that excitatory potentials elicited by thalamic stimulation and Cl(-)-dependent inhibitory postsynaptic potentials evoked by epicortical stimulation were not affected by intracellular D890. In these experiments successful intracellular drug application was verified by monitoring the transient shift of the Cl(-)-equilibrium potential induced by injection of KCl together with D890. It is concluded that in the penicillin-induced epileptic focus of the motor cortex Ca2+ inward currents participate in the generation of neuronal PDS.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004828 Epilepsies, Partial Conditions characterized by recurrent paroxysmal neuronal discharges which arise from a focal region of the brain. Partial seizures are divided into simple and complex, depending on whether consciousness is unaltered (simple partial seizure) or disturbed (complex partial seizure). Both types may feature a wide variety of motor, sensory, and autonomic symptoms. Partial seizures may be classified by associated clinical features or anatomic location of the seizure focus. A secondary generalized seizure refers to a partial seizure that spreads to involve the brain diffusely. (From Adams et al., Principles of Neurology, 6th ed, pp317) Abdominal Epilepsy,Digestive Epilepsy,Epilepsy, Focal,Epilepsy, Simple Partial,Focal Seizure Disorder,Gelastic Epilepsy,Partial Epilepsy,Partial Seizure Disorder,Seizure Disorder, Partial,Simple Partial Seizures,Amygdalo-Hippocampal Epilepsy,Benign Focal Epilepsy, Childhood,Benign Occipital Epilepsy,Benign Occipital Epilepsy, Childhood,Childhood Benign Focal Epilepsy,Childhood Benign Occipital Epilepsy,Epilepsy, Benign Occipital,Epilepsy, Localization-Related,Epilepsy, Partial,Occipital Lobe Epilepsy,Panayiotopoulos Syndrome,Partial Seizures, Simple, Consciousness Preserved,Rhinencephalic Epilepsy,Seizure Disorder, Focal,Subclinical Seizure,Uncinate Seizures,Abdominal Epilepsies,Amygdalo-Hippocampal Epilepsies,Benign Occipital Epilepsies,Digestive Epilepsies,Disorders, Focal Seizure,Disorders, Partial Seizure,Epilepsies, Abdominal,Epilepsies, Amygdalo-Hippocampal,Epilepsies, Benign Occipital,Epilepsies, Digestive,Epilepsies, Focal,Epilepsies, Gelastic,Epilepsies, Localization-Related,Epilepsies, Occipital Lobe,Epilepsies, Rhinencephalic,Epilepsies, Simple Partial,Epilepsy, Abdominal,Focal Epilepsies,Focal Epilepsy,Focal Seizure Disorders,Gelastic Epilepsies,Lobe Epilepsy, Occipital,Localization-Related Epilepsies,Localization-Related Epilepsy,Occipital Epilepsies, Benign,Occipital Epilepsy, Benign,Occipital Lobe Epilepsies,Partial Epilepsies,Partial Epilepsies, Simple,Partial Seizure Disorders,Partial Seizures, Simple,Rhinencephalic Epilepsies,Seizure Disorders, Focal,Seizure Disorders, Partial,Seizure, Subclinical,Seizure, Uncinate,Seizures, Simple Partial,Seizures, Subclinical,Seizures, Uncinate,Simple Partial Epilepsies,Subclinical Seizures,Uncinate Seizure
D005711 Gallopamil Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring. Methoxyverapamil,D-600,D600,Elgiprona,Gallobeta,Gallopamil Hydrochloride,Prebet,Procorum,gallopamil von ct,D 600,Hydrochloride, Gallopamil
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

O W Witte, and E J Speckmann, and J Walden
April 1986, The Journal of pharmacology and experimental therapeutics,
O W Witte, and E J Speckmann, and J Walden
January 1986, Experimental brain research,
O W Witte, and E J Speckmann, and J Walden
March 1986, Arzneimittel-Forschung,
O W Witte, and E J Speckmann, and J Walden
July 1986, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
O W Witte, and E J Speckmann, and J Walden
October 1991, Biulleten' eksperimental'noi biologii i meditsiny,
O W Witte, and E J Speckmann, and J Walden
April 1974, Brain research,
O W Witte, and E J Speckmann, and J Walden
December 2004, Current medicinal chemistry,
O W Witte, and E J Speckmann, and J Walden
January 1982, Dimensions of critical care nursing : DCCN,
O W Witte, and E J Speckmann, and J Walden
November 2016, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians,
O W Witte, and E J Speckmann, and J Walden
January 1997, Duodecim; laaketieteellinen aikakauskirja,
Copied contents to your clipboard!