Domain mapping of chicken gizzard caldesmon. 1987

T Fujii, and M Imai, and G C Rosenfeld, and J Bryan

Limited proteolysis, affinity chromatography, and immunoblotting have been used to define the domains of chicken gizzard caldesmon, caldesmon120, that interact with calmodulin, F-actin, and a monoclonal antibody prepared using human platelet caldesmon. Treatment of caldesmon120 with chymotrypsin produces groups of fragments near 100, 80, 60, 38, and 20 kDa. Further digestion produces peptides between 40 and 50 kDa. The 100- and 80-kDa peptides cross-react with the monoclonal antibody; the smaller polypeptides do not. The kinetics of cleavage and the antibody studies indicate that the 38- and 80-kDa fragments are the two major pieces of the 120-kDa protein. The 38-kDa fragment, purified by high performance liquid chromatography, and several of its subfragments at 21 and 25 kDa sediment with F-actin, bind to calmodulin-Sepharose in the presence of Ca2+, and are displaced from F-actin by Ca2+-calmodulin. The 80-kDa fragments did not interact with F-actin or calmodulin. We have tentatively placed the 38-kDa fragment at the C-terminal using polyclonal antibodies selected against a beta-galactosidase-caldesmon120 fusion protein produced by a lambda gt11 lysogen. The 38-, 25-, and 21-kDa fragments cross-react with these antibodies; the 80- and 60-kDa fragments do not. Caldesmon77 from human platelets also cross-reacts with these selected antibodies. The results suggest that interacting calmodulin and F-actin binding sites are localized on a 38-kDa C-terminal fragment of caldesmon. The smallest subfragment of this peptide that binds to both F-actin and calmodulin-Sepharose is about 21 kDa. The monoclonal antibody epitope is tentatively localized near the N-terminal of caldesmon77 and must be within 50 kDa of the N-terminal on caldesmon120.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D005895 Gizzard, Avian The posterior portion of the avian stomach located between the PROVENTRICULUS and INTESTINE. It consists of a thick muscular wall and small stones (gastroliths) that function to mechanically grind SEEDS and other ingested objects. Gizzard,Ventriculus,Avian Gizzard,Avian Gizzards,Gizzards,Gizzards, Avian
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
September 1985, The Biochemical journal,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
November 1988, Journal of biochemistry,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
November 1988, The Biochemical journal,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
February 1998, Tissue & cell,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
October 1988, Biochemical and biophysical research communications,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
June 1993, Biological & pharmaceutical bulletin,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
April 1996, Journal of muscle research and cell motility,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
November 1987, Journal of biochemistry,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
April 1996, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
T Fujii, and M Imai, and G C Rosenfeld, and J Bryan
April 1991, Journal of muscle research and cell motility,
Copied contents to your clipboard!