Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. 2014

Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521.

Translational regulation contributes to plasticity in metabolism and growth that enables plants to survive in a dynamic environment. Here, we used the precise mapping of ribosome footprints (RFs) on mRNAs to investigate translational regulation under control and sublethal hypoxia stress conditions in seedlings of Arabidopsis thaliana. Ribosomes were obtained by differential centrifugation or immunopurification and were digested with RNase I to generate footprint fragments that were deep-sequenced. Comparison of RF number and position on genic regions with fragmented total and polysomal mRNA illuminated numerous aspects of posttranscriptional and translational control under both growth conditions. When seedlings were oxygen-deprived, the frequency of ribosomes at the start codon was reduced, consistent with a global decline in initiation of translation. Hypoxia-up-regulated gene transcripts increased in polysome complexes during the stress, but the number of ribosomes per transcript relative to normoxic conditions was not enhanced. On the other hand, many mRNAs with limited change in steady-state abundance had significantly fewer ribosomes but with an overall similar distribution under hypoxia, consistent with restriction of initiation rather than elongation of translation. RF profiling also exposed the inhibitory effect of upstream ORFs on the translation of downstream protein-coding regions under normoxia, which was further modulated by hypoxia. The data document translation of alternatively spliced mRNAs and expose ribosome association with some noncoding RNAs. Altogether, we present an experimental approach that illuminates prevalent and nuanced regulation of protein synthesis under optimal and energy-limiting conditions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D012259 Ribonuclease, Pancreatic An enzyme that catalyzes the endonucleolytic cleavage of pancreatic ribonucleic acids to 3'-phosphomono- and oligonucleotides ending in cytidylic or uridylic acids with 2',3'-cyclic phosphate intermediates. EC 3.1.27.5. RNase A,Ribonuclease A,Pancreatic RNase,RNase I,Ribonuclease (Pancreatic),Ribonuclease I,Pancreatic Ribonuclease,RNase, Pancreatic
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015723 Gene Library A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences. DNA Library,cDNA Library,DNA Libraries,Gene Libraries,Libraries, DNA,Libraries, Gene,Libraries, cDNA,Library, DNA,Library, Gene,Library, cDNA,cDNA Libraries

Related Publications

Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
January 2023, Frontiers in plant science,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
January 2010, Methods in enzymology,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
June 2023, Plants (Basel, Switzerland),
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
March 2024, The Plant journal : for cell and molecular biology,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
October 2012, Proceedings of the National Academy of Sciences of the United States of America,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
October 2017, Genomics, proteomics & bioinformatics,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
September 2019, Plant physiology,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
April 2018, Cell reports,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
July 2013, Current protocols in molecular biology,
Piyada Juntawong, and Thomas Girke, and Jérémie Bazin, and Julia Bailey-Serres
December 2017, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!