Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli. 2017

Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Heat shock response is a classical stress-induced regulatory system in bacteria, characterized by extensive transcriptional reprogramming. To compare the impact of heat stress on the transcriptome and translatome in Escherichia coli, we conducted ribosome profiling in parallel with RNA-Seq to investigate the alterations in transcription and translation efficiency when E. coli cells were exposed to a mild heat stress (from 30 °C to 45 °C). While general changes in ribosome footprints correlate with the changes of mRNA transcripts upon heat stress, a number of genes show differential changes at the transcription and translation levels. Translation efficiency of a few genes that are related to environment stimulus response is up-regulated, and in contrast, some genes functioning in mRNA translation and amino acid biosynthesis are down-regulated at the translation level in response to heat stress. Moreover, our ribosome occupancy data suggest that in general ribosomes accumulate remarkably in the starting regions of ORFs upon heat stress. This study provides additional insights into bacterial gene expression in response to heat stress, and suggests the presence of stress-induced but yet-to-be characterized cellular regulatory mechanisms of gene expression at translation level.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D016680 Genome, Bacterial The genetic complement of a BACTERIA as represented in its DNA. Bacterial Genome,Bacterial Genomes,Genomes, Bacterial
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D018387 Codon, Initiator A codon that directs initiation of protein translation (TRANSLATION, GENETIC) by stimulating the binding of initiator tRNA (RNA, TRANSFER, MET). In prokaryotes, the codons AUG or GUG can act as initiators while in eukaryotes, AUG is the only initiator codon. Codon, Start,Initiator Codon,Codon, Initiation,Start Codon,Codons, Initiation,Codons, Initiator,Codons, Start,Initiation Codon,Initiation Codons,Initiator Codons,Start Codons
D018869 Heat-Shock Response A sequence of responses that occur when an organism is exposed to excessive heat. In humans, an increase in skin temperature triggers muscle relaxation, sweating, and vasodilation. Heat-Shock Reaction,Heat Shock,Heat Shock Stress,Heat Stress,Heat-Stress Reaction,Heat-Stress Response,Heat Shock Reaction,Heat Shock Response,Heat Shock Stresses,Heat Shocks,Heat Stress Reaction,Heat Stress Response,Heat Stresses,Heat-Shock Reactions,Heat-Shock Responses,Heat-Stress Reactions,Heat-Stress Responses,Shock, Heat,Stress, Heat,Stress, Heat Shock

Related Publications

Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
May 2022, Foods (Basel, Switzerland),
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
October 2012, Proceedings of the National Academy of Sciences of the United States of America,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
January 2010, Methods in enzymology,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
June 2023, Plants (Basel, Switzerland),
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
August 2017, BMC genomics,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
March 2019, Molecular cell,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
June 2023, International journal of hematology,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
January 2014, Proceedings of the National Academy of Sciences of the United States of America,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
August 2015, Nature communications,
Yanqing Zhang, and Zhengtao Xiao, and Qin Zou, and Jianhuo Fang, and Qifan Wang, and Xuerui Yang, and Ning Gao
January 2024, Microbiology spectrum,
Copied contents to your clipboard!