Transmembrane ion fluxes during activation of human T lymphocytes: role of Ca2+, Na+/H+ exchange and phospholipid turnover. 1987

E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein

The importance of increases in [Ca2+]i, stimulation of Na+/H+ exchange, and turnover of membrane phospholipids as signals for mitogen-induced activation of human T cells has been reviewed. In the presence of optimal concentrations of lectin and appropriately presented antigen, T cells increase [Ca2+]i, secrete IL2, express IL2 receptors and later divide. An increase in [Ca2+]i is critical for IL2 secretion in contrast to the requirements for IL2 receptor expression and IL2-IL2 receptor interaction. Treatment of T cells with TPA appears to bypass the requirement for an increase in [Ca2+]i for IL2 secretion and cell proliferation, indicating that various mitogens can trigger T cells through both [Ca2+]i-dependent and [Ca2+]i-independent pathways. Influx of Ca2+ from the extracellular milieu appears essential for the induced increase in [Ca2+]i associated with IL2 secretion. These increases in [Ca2+]i, which are correlated with the degree of lymphoproliferation and IL2 secretion, are sensitive to changes in membrane potential. The changes in [Ca2+]i are not mediated by the opening of voltage-gated K+ channels but the nature of the potential-sensitive event remains to be determined. The membrane potential effects may be mediated through the gating of a putative Ca2+ channel or by affecting the inward electrochemical Ca2+ gradient. It is clear that lymphoid cells of both T and B lineage possess a functional Na+/H+ antiport, which plays a central role in the regulation of pHi. It is also generally agreed that the antiport can be stimulated by mitogens, co-mitogens and by agents that induce differentiation. The meaning of this stimulation is not, however, entirely understood. It may be an essential signal or link in the series of events triggered by the binding of ligands to their membrane receptors. Alternatively, it may represent an ancillary event, intended to increase H+ ejection in anticipation of an increased metabolic rate. Finally, a third possible reason for the stimulation of Na+/H+ exchange could be to increase the osmotic content of the cells, inducing cell swelling that may be an early requirement for cellular growth. Indeed, amiloride-sensitive cellular swelling has been detected electronically following treatment of T lymphocytes with TPA (Grinstein et al. 1985a). PHA is a potent activator of phosphatidylinositol hydrolysis. In other cell types, receptors are coupled to phospholipase C by a G protein(s). However, the transducing mechanism in human peripheral blood lymphocytes does not appear to be a pertussis toxin-sensitive G protein(s).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
October 1985, The Journal of biological chemistry,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
October 1984, The Journal of general physiology,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
March 1995, The American journal of physiology,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
December 1989, FEBS letters,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
November 1994, The Journal of clinical investigation,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
February 1987, The Journal of general physiology,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
January 2005, Glia,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
November 1993, Cardiovascular research,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
October 1993, Cardiovascular research,
E W Gelfand, and G B Mills, and R K Cheung, and J W Lee, and S Grinstein
January 1988, Progress in clinical and biological research,
Copied contents to your clipboard!