Presynaptic Ca-antagonist omega-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons. 1987

H Kasai, and T Aosaki, and J Fukuda

The present studies on electrophysiological and pharmacological differences of the three types of Ca-currents (N-, L- and T-types) in whole-cell clamped, cultured embryonic chick sensory neurons revealed that the majority (94%) of the Ca-currents in the nerve cells were the N-type, omega-Conotoxin (omega CTX, 5 microM), a blocker of transmitter release at the presynaptic terminals, induced a complete and irreversible blockage of Ca-currents elicited from the resting membrane potential (-60 mV) in 29 cells among 58. The Ca-currents thus irreversibly blocked by the omega CTX were determined as the N-type (neuronal), as they were insensitive to nifedipine (5 microM) or were reduced in amplitude by Bay K 8644 (5 microM). A small fraction (12%) of the total Ca-currents, which were still present after the omega CTX treatment (in the rest of 29 cells), were pure L-type (long-lasting) Ca-currents, as they were enhanced by the Bay K and were blocked by the nifedipine. omega CTX was a partial and reversible blocker of the L-type Ca-currents. Furthermore, T-type (transient) Ca-currents elicited in the hyperpolarized membrane (at -100 mV) were blocked by omega CTX in an incomplete and reversible manner. The N-type Ca-currents thus separated in the nerve cells exhibited various differences in features of the voltage-dependence and ionic selectivity from the L- and T-type Ca-currents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008978 Mollusk Venoms Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine. Conus Venoms,Octopus Venoms,Snail Venoms,Conus Venom,Mollusc Venoms,Mollusk Venom,Octopus Venom,Snail Venom,Venom, Conus,Venom, Mollusk,Venom, Octopus,Venom, Snail,Venoms, Conus,Venoms, Mollusc,Venoms, Mollusk,Venoms, Octopus,Venoms, Snail
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D020866 omega-Conotoxin GVIA A neurotoxic peptide, which is a cleavage product (VIa) of the omega-Conotoxin precursor protein contained in venom from the marine snail, CONUS geographus. It is an antagonist of CALCIUM CHANNELS, N-TYPE. Conus geographus Toxin,Conus geographus Toxin GVIA,omega-CgTX,omega-CgTX GVIA,omega-Conus geographus toxin,GVIA, omega-CgTX,GVIA, omega-Conotoxin,Toxin, Conus geographus,geographus Toxin, Conus,geographus toxin, omega-Conus,omega CgTX,omega CgTX GVIA,omega Conotoxin GVIA,omega Conus geographus toxin,toxin, omega-Conus geographus

Related Publications

H Kasai, and T Aosaki, and J Fukuda
August 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Kasai, and T Aosaki, and J Fukuda
April 1999, Journal of neurophysiology,
H Kasai, and T Aosaki, and J Fukuda
June 1997, The Journal of general physiology,
H Kasai, and T Aosaki, and J Fukuda
May 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Kasai, and T Aosaki, and J Fukuda
July 2013, Biochimica et biophysica acta,
H Kasai, and T Aosaki, and J Fukuda
January 2009, Journal of neurophysiology,
H Kasai, and T Aosaki, and J Fukuda
June 1994, The Journal of physiology,
Copied contents to your clipboard!