Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. 1986

J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago

Measurements of the relative synthesis rates of mRNAs transcribed from the gene (thrS) for threonyl-tRNA synthetase and the adjacent gene (infC) for initiation factor IF3 show four- to fivefold more infC mRNA than thrS mRNA in vivo, suggesting that infC expression can be controlled independently of thrS expression. S1 mapping experiments reveal the existence of two transcription initiation sites for infC mRNAs internal to the thrS structural gene. Both the mRNA measurements and the S1 mapping experiments indicate that the majority of infC transcription initiates at the infC proximal promoter. In agreement with these results, the deletion of the infC distal promoter from infC-lacZ gene fusions does not affect the expression of these gene fusions in vivo. Measurements of the relative synthesis rate of infC mRNA in vivo in infC- strains overproducing IF3 shows that infC mRNA levels are normal in these strains, thus suggesting that IF3 regulates the translation of infC mRNAs in vivo. Extension of these experiments using infC-lacZ gene fusions carried on lambda bacteriophage and integrated at the lambda att site on the Escherichia coli chromosome shows that the expression of infC-lacZ protein fusions, but not infC-lacZ operon fusions, is derepressed in two infC- strains. A cellular excess of IF3 represses the expression of an infC-lacZ protein fusion but not an infC-lacZ operon fusion. Measurements of the relative mRNA synthesis rates of hybrid infC-lacZ mRNA synthesized from an infC-lacZ protein fusion under conditions of a fourfold derepression or a threefold repression of hybrid IF3-beta-galactosidase expression shows that the hybrid infC-lacZ mRNA levels remain unchanged. These results indicate that the cellular levels of IF3 negatively regulate the expression of its own gene, infC, at the translational level in vivo.

UI MeSH Term Description Entries
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013914 Threonine-tRNA Ligase An enzyme that activates threonine with its specific transfer RNA. EC 6.1.1.3. Threonyl T RNA Synthetase,Thr-tRNA Ligase,Threonyl-tRNA Synthetase,Ligase, Thr-tRNA,Ligase, Threonine-tRNA,Synthetase, Threonyl-tRNA,Thr tRNA Ligase,Threonine tRNA Ligase,Threonyl tRNA Synthetase
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
June 1987, Molecular & general genetics : MGG,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
January 1982, Biochemical Society symposium,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
May 1987, FEBS letters,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
February 2005, FEBS letters,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
May 1999, Journal of molecular biology,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
June 1987, Molecular & general genetics : MGG,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
January 1996, Biochimie,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
April 1996, Molecular & general genetics : MGG,
J S Butler, and M Springer, and J Dondon, and M Graffe, and M Grunberg-Manago
June 1991, Journal of bacteriology,
Copied contents to your clipboard!