Immune response to hepatitis B virus core antigen (HBcAg): localization of T cell recognition sites within HBcAg/HBeAg. 1987

D R Milich, and A McLachlan, and A Moriarty, and G B Thornton

Hepatitis B virus nucleocapsid particles (HBcAg) can function as a T cell-independent antigen when injected into athymic mice. However, immunization of euthymic mice with HBcAg results in dramatically increased anti-HBc titers. Therefore we have examined the murine T cell response to HBcAg in terms of immunogenicity, the influence of H-2-linked genes, and the fine specificity of T cell recognition using synthetic peptide analogs. The HBcAg was shown to be an extremely efficient immunogen in terms of T cell activation as measured by the in vivo dose required to induce T cell sensitization (1.0 microgram), and the minimal in vitro concentration required to elicit interleukin 2 (IL 2) production (0.03 ng/ml). The degree of T cell immunogenicity of HBcAg and its ability to directly activate B cells most likely explain the enhanced humoral response to HBcAg in euthymic mice and HBV-infected patients. The influence of H-2-linked genes on the humoral response to HBcAg was discernable, and high responder (H-2k,s,d), intermediate responder (H-2b,f), and low responder (H-2p) haplotypes were identified. The H-2-linked regulation of the T cell response correlated with in vivo anti-HBc production. Examination of the fine specificity of T cell recognition revealed HBcAg-specific T cells from a variety of strains recognize multiple but distinct sites within the HBcAg/HBeAg sequence. T cell recognition sites were defined by small (16 to 21 residue) synthetic peptides. Each strain recognized a predominant T cell determinant, and the fine specificity of this recognition process was dependent on the H-2 haplotype of the responding strain. For example H-2s,b strains recognized p120-140, H-2f,q strains recognized p100-120, and H-2d mice recognized p85-100 predominantly. Because these sequences are common to both HBcAg and a nonparticulate form of the antigen termed HBeAg, these results indicate that HBcAg and HBeAg are highly cross-reactive at the T cell level although they are serologically distinct. These findings may have clinical relevance, because T cell sensitization to HBeAg and the subsequent seroconversion to anti-HBe status correlates with viral clearance during hepatitis B infection.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006512 Hepatitis B Core Antigens The hepatitis B antigen within the core of the Dane particle, the infectious hepatitis virion. HBcAg,Hepatitis B Core Antigen
D006513 Hepatitis B e Antigens A closely related group of antigens found in the plasma only during the infective phase of hepatitis B or in virulent chronic hepatitis B, probably indicating active virus replication; there are three subtypes which may exist in a complex with immunoglobulins G. HBeAg,Hepatitis B e Antigen,Hepatitis Be Antigen,e Antigen,e Antigens,HBe Ag-1,HBe Ag-2,Hepatitis Be Antigens,Antigen, Hepatitis Be,Antigen, e,Antigens, Hepatitis Be,Antigens, e,Be Antigen, Hepatitis,Be Antigens, Hepatitis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
February 1985, Liver,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
January 1998, The Journal of infectious diseases,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
May 1984, The Journal of general virology,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
January 1980, Intervirology,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
January 2012, Scandinavian journal of infectious diseases,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
October 1990, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
August 1987, Liver,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
January 1992, Archives of virology. Supplementum,
D R Milich, and A McLachlan, and A Moriarty, and G B Thornton
January 1993, Archives of virology. Supplementum,
Copied contents to your clipboard!