Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules. 1987

H Gögelein, and R Greger
Max-Planck-Institut für Biophysik, Frankfurt/Main, Federal Republic of Germany.

The basolateral membrane of rabbit straight proximal tubules, which were cannulated and perfused on one side, was investigated with the patch clamp technique. Properties of inward and outward directed single K+ channel currents were studied in cell-attached and inside-out oriented cell-excised membrane patches. In cell-attached patches with NaCl Ringer solution both in pipette and bath, outward K+ currents could be detected after depolarization of the membrane patch by about 20-30 mV. The current-voltage (i/V) relationship could be fitted by the Goldman-Hodgkin-Katz (GHK) current equation, with the assumption that these channels were mainly permeable for K+ ions. A permeability coefficient PK of (0.17 +/- 0.04).10(-12) cm3/s was obtained, the single channel slope conductance at infinite positive potential g(V infinity) was 50 +/- 12 pS and the single channel conductance at the membrane resting potential g(Vbl) was 12 +/- 3 pS (n = 4). In cell-excised patches, with NaCl in the pipette and KCl in the bath, the data could also be fitted to the GHK equation and yielded PK = (0.1 +/- 0.01).10(-12) cm3/s, g(V infinity) = 40 +/- 4 pS and g(Vbl) = 7 +/- 1 pS (n = 8). In cell-attached patches with KCl in the pipette and NaCl in the bath, inward K+ channels occurred at clamp potentials less than or equal to 60 mV, whereas outward K+ channel current was detected at more positive voltages. The current-voltage curves showed slight inward rectification.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

H Gögelein, and R Greger
January 1988, The Journal of clinical investigation,
H Gögelein, and R Greger
February 1983, The American journal of physiology,
H Gögelein, and R Greger
April 1990, The American journal of physiology,
H Gögelein, and R Greger
January 1992, Mineral and electrolyte metabolism,
H Gögelein, and R Greger
June 1990, The American journal of physiology,
H Gögelein, and R Greger
January 1987, The American journal of physiology,
H Gögelein, and R Greger
January 1991, Archives internationales de pharmacodynamie et de therapie,
H Gögelein, and R Greger
June 1990, The American journal of physiology,
Copied contents to your clipboard!