Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. 1982

E Bello-Reuss

1. Cell membrane potentials were measured with intracellular 3 M-CKl microelectrodes in isolated, perfused segments of the straight portion of the rabbit proximal tubule. 2. Under in vitro conditions simulating the in vivo situation, the transepithelial potential difference was about 1.6 mV, lumen-positive, and the basolateral membrane potential was 61 mV, cell negative. 3. Isomolar single ion substitutions in the bath (K+ for Na+, isethionate for Cl-, N-methyl-D-glucamine (NMDG+) for Na+, and Cl- for HCO3-) resulted in significant basolateral membrane potential changes only when [K+] was increased and [HCO3-] was reduced; in both cases the basolateral membrane depolarized. Cl- and Na+ substitutions with large monovalent ions did not change basolateral membrane potential. 4. Transepithelial potential changes in substitution experiments suggest that, at the paracellular pathway, PK greater than PNa greater than PNMDG, and PCl greater than Pisethionate. 5. It is concluded that the basolateral membrane of these cells is mainly K+-conductive and that electrodiffusional PNa and PCl are undetectable by this technique. 6. Addition of 1 mM-Ba2+ to the bath reduced basolateral membrane electro-diffusional PK, as evidenced by depolarization and by a reduction of the magnitude of the change in membrane potential produced by increasing bath [K+]. 7. The depolarization produced by lowering bath [HCO3-] appears to result from a reduction of electrodiffusional PK, since it is blocked by Ba2+. There is no need to postulate a conductive pathway for HCO3- or a related species.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

E Bello-Reuss
April 1990, The American journal of physiology,
E Bello-Reuss
January 1987, The American journal of physiology,
E Bello-Reuss
August 1986, The American journal of physiology,
E Bello-Reuss
January 1988, The Journal of clinical investigation,
E Bello-Reuss
October 1987, Pflugers Archiv : European journal of physiology,
E Bello-Reuss
December 1981, Naunyn-Schmiedeberg's archives of pharmacology,
E Bello-Reuss
February 1986, The American journal of physiology,
Copied contents to your clipboard!