[Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants]. 2013

D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen

Glutathione S-transferases (GSTs) are ubiquitous enzymes in animals and plants, and they are multifunctional proteins encoded by a large gene family. GSTs are involved in response to the oxidative stress including drought, salt, heavy metals, and so on. Under oxidative stress, the excessive reactive oxygen species (ROS) induce an increase in GST levels, and then the GSTs metabolize the toxic products of lipid peroxidation, damaged DNA and other molecules. Previously, a full-length cDNA of a novel zeta GST gene, PpGST, was characterized from fruit of Pyrus pyrifolia Nakai cv Huobali. In the present study, a constitutive plant expression vector of PpGSTwas constructed and transferred into tobacco (Nicotiana tabacum L. cv Xanthi) to verify the function of PpGST. As a result, the PpGSTgene was successfully integrated into the genome of the transgenic tobacco lines and expressed as expected in the transformants through Southern blotting and quantitative reverse transcription-polymerase chain reaction analysis. Growth of T1 generation plants of PpGST transgenic lines and WT under non-stressful conditions was similar, however, the transgenic tobacco lines showed relatively normal growth under drought, NaCl, and cadmium (Cd) stresses. Furthermore, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Simultaneously, the MDA content of each T1 transgenic tobacco plant was only slightly increased and significantly lower than that of the WT under drought, salt and Cd stress. Together with the GST activity of the transgenic tobacco lines, which was significantly increased under stressful conditions, as compared with that in WT, overexpression of PpGSTin tobacco enhanced the tolerance of transgenic tobacco lines to oxidative damage caused by drought, NaCl, and Cd stresses.

UI MeSH Term Description Entries
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D005638 Fruit The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds. Berries,Legume Pod,Plant Aril,Plant Capsule,Aril, Plant,Arils, Plant,Berry,Capsule, Plant,Capsules, Plant,Fruits,Legume Pods,Plant Arils,Plant Capsules,Pod, Legume,Pods, Legume
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D055049 Salt Tolerance The ability of organisms to sense and adapt to high concentrations of salt in their growth environment. Salt-Tolerance,Saline-Tolerance,Salinity Tolerance,Salt Adaptation,Salt Adaption,Salt-Adaption,Adaptation, Salt,Adaption, Salt,Saline Tolerance,Salinity Tolerances,Salt Adaptations,Salt Adaptions,Salt Tolerances,Tolerance, Salinity,Tolerance, Salt
D055864 Droughts Prolonged dry periods in natural climate cycle. They are slow-onset phenomena caused by rainfall deficit combined with other predisposing factors. Drought
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
June 2018, Biochemistry. Biokhimiia,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
September 2019, Biology open,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
November 2000, Plant & cell physiology,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
October 2006, Plant cell reports,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
October 1997, Nature biotechnology,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
April 2017, Plant cell reports,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
January 2022, Frontiers in plant science,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
November 2014, Plant cell reports,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
April 2019, Applied biochemistry and biotechnology,
D Liu, and Y Liu, and J Rao, and G Wang, and H Li, and F Ge, and C Chen
August 2003, The Plant journal : for cell and molecular biology,
Copied contents to your clipboard!