Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress. 2018

Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Although glutathione S-transferase (GST, EC 2.5.1.18) is thought to play important roles in abiotic stress, limited information is available regarding the function of its gene in grapes. In this study, a GST gene from grape, VvGSTF13, was cloned and functionally characterized. Transgenic Arabidopsis plants containing this gene were normal in terms of growth and maturity compared with control plants but had enhanced resistance to salt, drought, and methyl viologen stress. The increased tolerance of the transgenic plants correlated with changes in activities of antioxidative enzymes. Our results indicate that the gene from grape plays a positive role in improving tolerance to salinity, drought, and methyl viologen stresses in Arabidopsis.

UI MeSH Term Description Entries
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D055049 Salt Tolerance The ability of organisms to sense and adapt to high concentrations of salt in their growth environment. Salt-Tolerance,Saline-Tolerance,Salinity Tolerance,Salt Adaptation,Salt Adaption,Salt-Adaption,Adaptation, Salt,Adaption, Salt,Saline Tolerance,Salinity Tolerances,Salt Adaptations,Salt Adaptions,Salt Tolerances,Tolerance, Salinity,Tolerance, Salt
D055864 Droughts Prolonged dry periods in natural climate cycle. They are slow-onset phenomena caused by rainfall deficit combined with other predisposing factors. Drought
D027843 Vitis A plant genus in the family Vitaceae. It is a woody vine cultivated worldwide. It is best known for grapes, the edible fruit and used to make WINE and raisins. Grapes,Raisins,Vitis vinifera,Grape,Raisin

Related Publications

Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
January 2015, PloS one,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
January 2015, PloS one,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
January 2013, Molekuliarnaia biologiia,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
December 2011, Plant physiology and biochemistry : PPB,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
August 2011, Journal of hazardous materials,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
November 2003, Journal of plant physiology,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
December 2005, Journal of biosciences,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
September 2007, Plant physiology and biochemistry : PPB,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
January 2018, Frontiers in plant science,
Jing Xu, and Ai-Qing Zheng, and Xiao-Juan Xing, and Lei Chen, and Xiao-Yan Fu, and Ri-He Peng, and Yong-Sheng Tian, and Quan-Hong Yao
September 2008, Plant physiology,
Copied contents to your clipboard!