Design, synthesis and biological evaluation of novel steroidal spiro-oxindoles as potent antiproliferative agents. 2014

Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
School of Pharmaceutical Sciences and New Drug Research & Development Center, Zhengzhou University, Zhengzhou 450001, PR China. Electronic address: zzuyubin@hotmail.com.

Two series of novel steroidal spiro-pyrrolidinyl oxindoles 3a-t and 6a-c were designed and synthesized from dehydroepiandrosterone using the 1,3-dipolar cycloaddition as the key step and further evaluated for their antiproliferative activities for four human cancer cell lines (MGC-803, EC109, SMMC-7721 and MCF-7). This protocol achieved the formation of two CC bonds, one CN bond and the creation of one new five-membered pyrrolidine ring and three contiguous stereocenters in a single operation. Biological evaluation showed that these synthesized steroidal spiro-pyrrolidinyl oxindoles possessed moderate to good antiproliferative activities against the tested cell lines and some of them were more potent than 5-Fu. Particularly, compound 3g showed good antiproliferative activity against SMMC-7721 (IC50=0.71μM). Steroid dimer 6b showed improved antiproliferative activities against SMMC-7721 and MCF-7 with the IC50 values of 4.30 and 2.06μM, respectively. Flow cytometry analysis demonstrated that compound 3n caused the cellular early apoptosis and cell cycle arrest at G2/M phase in a concentration- and time-dependent manner. [Corrected]

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007664 Ketosteroids Steroid derivatives formed by oxidation of a methyl group on the side chain or a methylene group in the ring skeleton to form a ketone. Oxosteroids
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013141 Spiro Compounds Cyclic compounds that include two rings which share a single atom (usually a carbon). The simplest example of this type of compound is Spiro[2.2]pentane, which looks like a bow tie. Compounds, Spiro
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
October 2019, Steroids,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
August 2023, Archiv der Pharmazie,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
May 2021, ChemMedChem,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
November 2014, Molecules (Basel, Switzerland),
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
June 2017, Steroids,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
January 2016, Anti-cancer agents in medicinal chemistry,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
September 2018, Molecules (Basel, Switzerland),
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
December 2021, Steroids,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
January 2016, PloS one,
Bin Yu, and Xiao-Jing Shi, and Ping-Ping Qi, and De-Quan Yu, and Hong-Min Liu
August 2017, MedChemComm,
Copied contents to your clipboard!