Characterization of a monoclonal antibody MoAb bH6 reacting with a neoepitope of human C3 expressed on C3b, iC3b, and C3c. 1988

P Garred, and T E Mollnes, and T Lea, and E Fischer
Institute of Immunology and Rheumatology, Rikshospitalet, Oslo, Norway.

Activation products of the complement cascade contain neoepitopes that are not present in the individual native components. Monoclonal antibodies detecting neoepitopes have been used for direct quantification of activation at different steps in the cascade. These methods are suggested to be more sensitive and reliable than conventional complement activation tests, which are hampered by precipitation or fractionation procedures. The present study describes production screening and characterization of a monoclonal antibody (MoAb) bH6. MoAb bH6 exhibited a significantly higher binding capacity to ELISA plates coated with zymosan-activated human serum than to plates coated with EDTA plasma. When fixed to the enzyme-linked immunosorbent assay (ELISA) plates, MoAb bH6 retained material from zymosan-activated serum that only reacted with anti-C3 antibodies. Crossed immunoelectrophoresis performed on zymosan-activated serum demonstrated that MoAb bH6 co-precipitated with anti-C3c antibodies. In experiments using highly purified cell-bound fragments MoAb bH6 showed reactivity with C3b and iC3b, but not with C3d. MoAb bH6 reacted in ELISA with purified C3c, but not with C3dg, both as capture antibody and in tests with the fragments absorbed to the solid phase. Thus, MoAb bH6 is highly specific for a neoepitope of human C3 expressed on the cleavage fragments of C3b, iC3b, and C3c.

UI MeSH Term Description Entries
D007123 Immunoelectrophoresis, Two-Dimensional Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis. Immunoelectrophoresis, Crossed,Immunoelectrophoresis, 2-D,Immunoelectrophoresis, 2D,2-D Immunoelectrophoresis,2D Immunoelectrophoresis,Crossed Immunoelectrophoresis,Immunoelectrophoresis, 2 D,Immunoelectrophoresis, Two Dimensional,Two-Dimensional Immunoelectrophoresis
D007132 Immunoglobulin Isotypes The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties. Antibody Class,Ig Isotype,Ig Isotypes,Immunoglobulin Class,Immunoglobulin Isotype,Antibody Classes,Immunoglobulin Classes,Class, Antibody,Class, Immunoglobulin,Classes, Antibody,Classes, Immunoglobulin,Isotype, Ig,Isotype, Immunoglobulin,Isotypes, Ig,Isotypes, Immunoglobulin
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003167 Complement Activation The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES. Activation, Complement,Activations, Complement,Complement Activations
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D003180 Complement C3b Inactivator Proteins Endogenous proteins that inhibit or inactivate COMPLEMENT C3B. They include COMPLEMENT FACTOR H and COMPLEMENT FACTOR I (C3b/C4b inactivator). They cleave or promote the cleavage of C3b into inactive fragments, and thus are important in the down-regulation of COMPLEMENT ACTIVATION and its cytolytic sequence. C3b Inactivators,C3b Inhibitors,Complement 3b Inactivators,Complement 3b Inhibitors,Complement C3b Inactivators,Complement C3b Inhibitor Proteins,Conglutinogen Activating Factors,Factors, Conglutinogen Activating,Inactivators, C3b,Inactivators, Complement 3b,Inactivators, Complement C3b,Inhibitors, C3b,Inhibitors, Complement 3b
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P Garred, and T E Mollnes, and T Lea, and E Fischer
April 1994, Immunology,
P Garred, and T E Mollnes, and T Lea, and E Fischer
June 1985, The Journal of experimental medicine,
P Garred, and T E Mollnes, and T Lea, and E Fischer
May 1987, Blood,
P Garred, and T E Mollnes, and T Lea, and E Fischer
January 1997, International archives of allergy and immunology,
P Garred, and T E Mollnes, and T Lea, and E Fischer
October 2010, Journal of immunological methods,
P Garred, and T E Mollnes, and T Lea, and E Fischer
March 1985, FEBS letters,
P Garred, and T E Mollnes, and T Lea, and E Fischer
February 1990, Journal of immunology (Baltimore, Md. : 1950),
P Garred, and T E Mollnes, and T Lea, and E Fischer
August 1988, Nuclear medicine communications,
P Garred, and T E Mollnes, and T Lea, and E Fischer
November 1986, European journal of immunology,
Copied contents to your clipboard!