Bovine conglutinin binds to an oligosaccharide determinant presented by iC3b, but not by C3, C3b or C3c. 1994

S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
Department of Immunology, Aarhus University, Denmark.

Bovine conglutinin is a serum lectin that agglutinates erythrocytes preincubated with antibodies and complement. This agglutination occurs through the binding of conglutinin to iC3b, a fragment of the complement component C3. It was reported that conglutinin binds fluid-phase C3b and C3c as well as iC3b. We re-investigated the reactivity of conglutinin towards fluid-phase C3 degradation products. ELISA wells were coated with conglutinin and reacted with C3 split products generated in normal human serum, in factor I-deficient serum, or in factor I-depleted serum. Conglutinin-bound C3 fragments were detected with anti-C3c and anti-C3d antibodies. An increased signal was observed during the activation of complement in normal human serum with the peak response after 1-2 hr, following which the signal decreased, reaching background level after 72 hr. The oligosaccharides on C3c, generated in serum, are thus not recognized by conglutinin. No signal was observed when factor I-deficient serum or factor I-depleted serum was used instead of normal serum. Reconstitution with purified factor I re-established the normal pattern. Examination of the conglutinin-bound C3 molecules by SDS-PAGE and Western blotting with anti-C3c and anti-C3d antibodies revealed bands characteristic for iC3b, and no bands corresponding to C3b or C3c. Reduction of the disulphide bonds prior to the incubation of the activated serum with the conglutinin-coated wells revealed a band of 63,000 MW, characteristic of the N-terminal fragment of the alpha-chain of iC3b. We also investigated the binding to the solid-phase conglutinin of purified C3 and degradation products generated with enzymes. In this case, C3 as well as C3b and C3c were bound, suggesting conformational changes in C3 during purification. In conclusion, when C3 conversion takes place at near physiological conditions, conglutinin interacts specifically with the oligosaccharide on the alpha-chain of iC3b.

UI MeSH Term Description Entries
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D003180 Complement C3b Inactivator Proteins Endogenous proteins that inhibit or inactivate COMPLEMENT C3B. They include COMPLEMENT FACTOR H and COMPLEMENT FACTOR I (C3b/C4b inactivator). They cleave or promote the cleavage of C3b into inactive fragments, and thus are important in the down-regulation of COMPLEMENT ACTIVATION and its cytolytic sequence. C3b Inactivators,C3b Inhibitors,Complement 3b Inactivators,Complement 3b Inhibitors,Complement C3b Inactivators,Complement C3b Inhibitor Proteins,Conglutinogen Activating Factors,Factors, Conglutinogen Activating,Inactivators, C3b,Inactivators, Complement 3b,Inactivators, Complement C3b,Inhibitors, C3b,Inhibitors, Complement 3b
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D012712 Serum Globulins All blood proteins except albumin ( Euglobulin,Euglobulins,Pseudoglobulin,Pseudoglobulins,Serum Globulin,Globulin, Serum,Globulins, Serum

Related Publications

S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
March 1988, Scandinavian journal of immunology,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
December 1983, Journal of clinical & laboratory immunology,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
January 2010, PloS one,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
November 1985, Infection and immunity,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
July 1988, Immunology,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
April 2015, Journal of immunological methods,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
August 1978, Journal of immunology (Baltimore, Md. : 1950),
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
February 1993, Clinical and experimental immunology,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
January 1996, Biochemical and biophysical research communications,
S B Laursen, and S Thiel, and B Teisner, and U Holmskov, and Y Wang, and R B Sim, and J C Jensenius
June 1985, The Journal of experimental medicine,
Copied contents to your clipboard!