Primary sequence mapping of human apolipoprotein B-100 epitopes. Comparisons of trypsin accessibility and immunoreactivity and implication for apoB conformation. 1988

P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Differential trypsin-accessibility and monoclonal antibodies (Mabs) to human apolipoprotein (apo) B-100 are both important tools for probing apoB structure and conformation on low-density lipoproteins (LDL). In this study, we have mapped greater than 80% of the C-terminal region (720 residues) of LDL apoB-100 using trypsin digestion. Our results extend our previous data [Yang et al. (1986) Nature (Lond.) 323, 738-742] confirming that the C-terminal region of about 420 residues of apoB-100 is largely inaccessible to trypsin, whereas the part just preceding this region has interspersed trypsin-accessible and inaccessible peptides. We have determined the amino acid sequence of specific apoB-100 peptides containing epitopes recognized by four separate Mabs: two epitopes have been mapped to within 20 residues, one has been mapped to 36 residues, and the last to 80 residues. We used polyclonal antisera to identify 16 overlapping clones of varying lengths of apoB-100 cDNAs extending from the C-terminus of apoB-100 cloned in the expression vector, lambda gt11. These clones were then tested against individual Mabs. By nucleotide sequence analysis of overlapping clones that show differential reactivities to different Mabs, we have mapped the individual epitopes of each Mab to within about 50-150 amino acid residues predicted from the DNA sequences. Confirmation and further fine mapping were accomplished by competition for LDL binding using partially purified fusion proteins and chemically synthesized oligopeptides. Two epitopes (Mabs 7 and 22) were mapped to the C-terminal 20 amino acids of apoB-100, one (Mab 16) to residues 4154-4189, and another (Mab 20) to residues 3926-4005. Mab 16 precipitates more than 80% of LDL particles. Mab 20 precipitates only denatured apoB but not native LDL apoB [Milne et al. (1987) Mol. Immunol. 24, 435]. Mabs 7 and 22 are unique in that they precipitate LDL apoB modified by storage much better than freshly isolated LDL-apoB. Although epitope expression and trypsin-accessibility represent two useful probes for the study of protein conformation, there was no obvious correlation between these two parameters when applied to LDL apoB for the antibodies we have examined.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
December 1986, The EMBO journal,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
September 1998, Biochemistry,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
December 1999, Arteriosclerosis, thrombosis, and vascular biology,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
July 1986, The Journal of biological chemistry,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
September 1986, Biochemical and biophysical research communications,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
June 1996, Diabetes & metabolism,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
June 1992, Journal of lipid research,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
September 1986, Nucleic acids research,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
March 1988, Proceedings of the National Academy of Sciences of the United States of America,
P F Chen, and Y L Marcel, and C Y Yang, and A M Gotto, and R W Milne, and J T Sparrow, and L Chan
October 1986, The Journal of biological chemistry,
Copied contents to your clipboard!