Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. 2014

Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.

The phylotypes of rumen bacteria have increased by the accumulation of 16S rRNA gene sequences, and they show a complex microbial community structure in the rumen. However, most of the biochemical properties of rumen bacteria defined by phylotypes are still unknown. We attempted to improve the culturability of cellulolytic bacteria from the rumen using an agar medium (CA) and a gellan gum medium (CG) containing azo-carboxymethylcellulose as a carbon source. We isolated 129 strains from these media, and the numbers of isolates that showed filter paperase, carboxymethylcellulase and xylanase activity were 51, 117 and 105, respectively. The isolates were classified into six phyla by 16S rRNA gene sequences. In accordance with other studies, fibre-adherent rumen bacteria from the phylum Firmicutes were the most abundant cultured isolates obtained (82.2%). Isolates that were unclassified (< 97% similarity) totalled 19.4%, indicating that the media used in this study was successfully able to improve the culturability of rumen cellulolytic bacteria. Moreover, as the Chao1 richness of CG was higher than that of CA, we estimated that, compared with CA, CG supports the growth of a wide variety of rumen bacteria. These results demonstrate that culturable species of ruminal cellulolytic bacteria can be increased using improved culture media.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002480 Cellulase An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans. Endo-1,4-beta-Glucanase,Cellulysin,Endoglucanase,Endoglucanase A,Endoglucanase C,Endoglucanase E,Endoglucanase IV,Endoglucanase Y,beta-1,4-Glucan-4-Glucanohydrolase,Endo 1,4 beta Glucanase,beta 1,4 Glucan 4 Glucanohydrolase
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000362 Agar A complex sulfated polymer of galactose units, extracted from Gelidium cartilagineum, Gracilaria confervoides, and related red algae. It is used as a gel in the preparation of solid culture media for microorganisms, as a bulk laxative, in making emulsions, and as a supporting medium for immunodiffusion and immunoelectrophoresis.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
January 2018, Methods in molecular biology (Clifton, N.J.),
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
February 2011, Wei sheng wu xue bao = Acta microbiologica Sinica,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
July 1969, Journal of bacteriology,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
January 2013, Asian-Australasian journal of animal sciences,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
July 2017, International journal of systematic and evolutionary microbiology,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
May 1968, Applied microbiology,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
October 2006, Research in microbiology,
Thet Nyonyo, and Takumi Shinkai, and Makoto Mitsumori
January 2018, Frontiers in microbiology,
Copied contents to your clipboard!