Human plasma inter-alpha-trypsin inhibitor is encoded by four genes on three chromosomes. 1989

M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
Laboratoire de Physiopathologie et Génétique Rénale et Pulmonaire, Institute National de la Santé et de la Recherche Médicale Unité 295, Faculté de Médecine de Rouen, Saint Etienne-du-Rouvray, France.

Human inter-alpha-trypsin inhibitor is a plasma protein of Mr 180,000 which has long been described as a single polypeptide chain. However, we have previously demonstrated that it is synthesized in liver by two different mRNA populations coding for heavy or light polypeptide chains [Bourguignon, J. et al. (1983) FEBS Lett. 162, 379-383] and cDNA clones for the heavy or light chains have recently been isolated and characterized [Bourguignon, J. et. al. (1985) Biochem. Biophys. Res. Commun. 131, 1146-1153; Salier, J.P. et al. (1987) Proc. Natl Acad. Sci. USA 84, 8272-8276]. In the present study, we show that human poly(A)-rich RNAs hybrid-selected with various heavy-chain-encoding cDNA clones translate three different heavy chains, designated H1 (Mr 92,000), H2 (Mr 98,000) and H3 (Mr 107,000). We previously characterized two heavy-chain cDNA clones. We now report that they correspond to H1 and H2 chains. We have also determined the sequence of an additional cDNA clone which codes for H3 chain. Its insert size is 1.79 kb with a single open reading frame and a poly(A) tail. The deduced amino acid sequence of the H3 chain is highly similar to those of the H1 (54%) and H2 (44%) chains. Northern analysis of human liver poly(A)-rich RNAs with the three heavy-chain cDNAs as probes clearly identified a single major mRNA population of 3.3 +/- 0.1 kb. Chromosomal localization by in situ hybridization shows that inter-alpha-trypsin inhibitor genes are located on three different human chromosomes. The H1 and H3 genes are located in the p211-p212 region of chromosome 3, whereas the H2 gene resides in the p15 band of chromosome 10. The light-chain gene is located in the q32-q33 region of chromosome 9. These results indicate that heavy and light chains of inter-alpha-trypsin inhibitor are encoded by at least four functional genes.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
September 1973, Clinical biochemistry,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
September 1989, The Journal of biological chemistry,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
May 1988, Biological chemistry Hoppe-Seyler,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
August 1987, Biological chemistry Hoppe-Seyler,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
May 1973, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
April 1988, Biochimica et biophysica acta,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
January 1976, Methods in enzymology,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
January 1991, Annales de biologie clinique,
M Diarra-Mehrpour, and J Bourguignon, and R Sesboüé, and M G Matteï, and E Passage, and J P Salier, and J P Martin
January 1994, Vox sanguinis,
Copied contents to your clipboard!