cDNA cloning of human inter-alpha-trypsin inhibitor discloses three different proteins. 1987

T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
Abteilung für Klinische Chemie und Klinische Biochemie in der Chirurgischen Klinik Innenstadt der Universität München.

Inter-alpha-trypsin inhibitor (ITI) is a serum protein of unknown function. Part of the molecule (formerly called HI30) is closely related to a tumor-derived protein acting as a growth factor for endothelial cells. We screened a human liver cDNA expression library with antibodies raised against human ITI and isolated several clones which could be divided into three groups according to their DNA sequences. The cDNA of the first group codes for a protein composed of alpha 1-microglobulin (alpha 1M) and urinary trypsin inhibitor (UTI) and is identical to that encoded by a clone originally found by screening a human liver cDNA library with oligonucleotides derived from amino-acid sequences of the two Kunitz-type domains of UTI. The proteins derived from the cDNA of the second and the third group of clones are distantly related to each other, but unrelated to the protein derived from group 1 clones. Partial amino-acid sequencing of ITI isolated from serum allowed the verification of large parts of the cDNA-derived amino-acid sequences. The results favour the view that ITI is not a single chain protein, but rather a very tight complex of several components or a mixture of such complexes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
July 1998, Biological & pharmaceutical bulletin,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
May 1988, Biological chemistry Hoppe-Seyler,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
August 1992, Biochimica et biophysica acta,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
April 1988, Biochimica et biophysica acta,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
September 1973, Clinical biochemistry,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
January 1995, Journal of biochemistry,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
January 1976, Methods in enzymology,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
September 1985, Biochemical and biophysical research communications,
T Schreitmüller, and K Hochstrasser, and P W Reisinger, and E Wachter, and W Gebhard
January 1989, European journal of biochemistry,
Copied contents to your clipboard!