Characterization of a human T cell-specific chimeric antibody (CD7) with human constant and mouse variable regions. 1989

G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
Department of Biotechnology, SANDOZ Ltd., Basle, Switzerland.

A chimeric human-mouse anti-T lymphocyte mAb (CHT2; SDZ 214-380) has been constructed by cloning the variable region exons of both the L and H chains from the murine hybridoma RFT2 which have CD7 specificity and reactivity with a 40-kDa Ag. The variable L chain exon was joined to the human C kappa, and the variable H chain exon was joined to the human IgG1 region exon encoding the human allotype nGlm(z), nGlm(a). The gene constructs were introduced by electroporation into SP2/0, a non-Ig-producing murine myeloma. The identical tissue reactivity of the newly made CHT2 and the original murine RFT2 mAb (CD7) was confirmed by blocking experiments as well as by immunohistology and flow cytometry. Because this new mAb may have clinical use, the CD7 Ag expression of T lineage cells has also been quantitated in double and triple immunofluorescence assays in combinations with mAb to restricted forms of leukocyte common Ag that designate unprimed (CD45R+) and primed T lymphocyte populations (UCHL1+). CHT2 shows very strong reactivity with large thymic blast cells and cortical thymocytes from which T-ALL originates. Strong staining is seen on CD45R+ unprimed "virgin" T lymphocytes, whereas the expression on UCHL1+ primed "memory" cell types is weaker unless these cells are reactivated by mitogens or Ag. Thus CHT2 may spare a substantial population of resting memory T cells which is relevant to its potential therapeutic use. In addition the chimeric antibody had a greater in vitro antibody dependent cytotoxicity and a prolonged half-life (4.2 to 5.0 days) in Rhesus monkeys.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007127 Immunoglobulin Constant Regions The domains of the immunoglobulin molecules that are invariable in their amino acid sequence within any class or subclass of immunoglobulin. They confer biological as well as structural functions to immunoglobulins. One each on both the light chains and the heavy chains comprises the C-terminus half of the IMMUNOGLOBULIN FAB FRAGMENT and two or three of them make up the rest of the heavy chains (all of the IMMUNOGLOBULIN FC FRAGMENT) Ig Constant Regions,Immunoglobulin Constant Region,Constant Region, Ig,Constant Region, Immunoglobulin,Constant Regions, Ig,Constant Regions, Immunoglobulin,Regions, Ig Constant
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
January 1987, Proceedings of the National Academy of Sciences of the United States of America,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
July 1986, Hybridoma,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
June 1996, Immunology,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
August 1991, Transplantation,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
April 1994, Hybridoma,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
January 2012, mAbs,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
November 1996, Journal of biotechnology,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
June 1993, Journal of immunology (Baltimore, Md. : 1950),
G Heinrich, and H Gram, and H P Kocher, and M H Schreier, and B Ryffel, and A Akbar, and P L Amlot, and G Janossy
February 1993, Transplantation proceedings,
Copied contents to your clipboard!