Human constant regions influence the antibody binding characteristics of mouse-human chimeric IgG subclasses. 1996

N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
Institute of Child Health, London, UK.

Although antibody affinity is primarily determined by immunoglobulin variable region structure human IgG antibodies of the four subclasses specific for the same antigen have been shown to differ in their affinity. To explore the influence of the immunoglobulin constant region on functional antibody affinity, a set of V region identical mouse-human chimeric IgG subclasses specific for TAG72 (tumour-associated glycoprotein) were studied. Biomolecular interaction analysis (BIA) was used to determine the binding kinetics of whole IgG subclasses and F(ab')2 fragments. Despite identical V regions, binding kinetics differed for the four subclasses. The apparent dissociation rate constants of the intact immunoglobulins ranked IgG4 < IgG3 < IgG2 < IgG1. In contrast, analysis of the binding characteriztics of the F(ab')2 fragments derived from IgG1, IgG2 and IgG4 revealed identical binding kinetics. The structure of the constant regions of the humanized IgG subclass antibodies clearly influenced functional antibody affinity, as has been described for the murine IgG subclasses. The exact mechanism for this phenomenon remains obscure but such differences should be taken into account when designing or choosing antibodies for therapeutic use.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007127 Immunoglobulin Constant Regions The domains of the immunoglobulin molecules that are invariable in their amino acid sequence within any class or subclass of immunoglobulin. They confer biological as well as structural functions to immunoglobulins. One each on both the light chains and the heavy chains comprises the C-terminus half of the IMMUNOGLOBULIN FAB FRAGMENT and two or three of them make up the rest of the heavy chains (all of the IMMUNOGLOBULIN FC FRAGMENT) Ig Constant Regions,Immunoglobulin Constant Region,Constant Region, Ig,Constant Region, Immunoglobulin,Constant Regions, Ig,Constant Regions, Immunoglobulin,Regions, Ig Constant
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000915 Antibody Affinity A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Affinity, Antibody,Antibody Avidity,Avidity, Antibody,Affinities, Antibody,Antibody Affinities,Antibody Avidities,Avidities, Antibody
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
January 1987, Proceedings of the National Academy of Sciences of the United States of America,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
December 1989, Journal of immunology (Baltimore, Md. : 1950),
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
March 1992, Molecular immunology,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
August 2013, Virulence,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
December 1988, Journal of the National Cancer Institute,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
November 2020, Molecular immunology,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
June 1972, European journal of immunology,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
March 1981, Clinical and experimental immunology,
N McCloskey, and M W Turner, and P Steffner, and R Owens, and D Goldblatt
October 1989, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!