The mitochondrial inner-membrane anion channel possesses two mercurial-reactive regulatory sites. 1989

A D Beavis
Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008.

The mitochondrial inner membrane anion channel catalyzes the electrophoretic transport of a wide variety of anions and is inhibited by matrix divalent cations and protons. In this paper, evidence is provided that mersalyl and p-chloromercuribenzene-sulfonate each interact with this uniporter at two distinct sites. Binding to site 1 causes a shift in the pH dependence of transport, characterized by a decrease in the pIC50 for protons from about 7.8 to about 7.3, and leads to substantial stimulation of transport in the physiological pH range. This effect is not reversed by addition of thiols such as thioglycolate. Binding of mersalyl and p-chloromercuribenzenesulfonate to site 2 inhibits the transport of most anions including Pi, citrate, malonate, sulfate and ferrocyanide. The transport of Cl- is inhibited about 60% by mersalyl, but is not inhibited by p-chloromercuribenzenesulfonate. These data suggest that inhibition is a steric effect dependent on the size of the anion and the size of the R group of the mercurial. This inhibition is reversed by thioglycolate. Dose/response curves indicate that mersalyl binds to site 1 as the dose increased from 7 to 13 nmol/mg, whereas it binds to site 2 as the dose is increased from 10 to 18 nmol/mg. Thus, at certain pH values both stimulatory and inhibitory phases can be seen in the same dose/response curve. It is suggested that these sites may contain thiol groups and that physiological regulators may exist which can effect changes in activity of the inner membrane anion uniporter similar to those exerted by mercurials.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008634 Mersalyl A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions. Mercuramide,Mercusal,Mersalin,Mersalyl Acid,Salyrgan,Acid, Mersalyl
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D009941 Organomercury Compounds Organic compounds which contain mercury as an integral part of the molecule. Compounds, Organomercury
D010663 Phenylmercury Compounds Organic mercury compounds in which the mercury is attached to a phenyl group. Often used as fungicides and seed treatment agents. Phenyl Mercury Compounds,Phenylmercurials,Compounds, Phenyl Mercury,Compounds, Phenylmercury,Mercury Compounds, Phenyl
Copied contents to your clipboard!