The pH-dependent anion-conducting channel of the mitochondrial inner membrane is potently inhibited by zinc ions. 1993

M J Selwyn, and L T Ng, and H L Choo
Department of Biochemistry, Faculty of Medicine, National University of Singapore.

Zinc is a potent reversible inhibitor of the pH-dependent anion-conducting channel in the mitochondrial inner membrane, 50% inhibition was produced by 1.5 microM added Zn2+ at which point free Zn2+ was < or = 10(-8) M. Inhibition by Zn2+ is rapid but can be prevented or rapidly reversed by excess EDTA. Concentrations of Zn2+ higher than 4 microM caused reversal of inhibition to a variable extent depending on the anion. Under these conditions Zn2+ did not inhibit ribose entry, the phosphate transporter, or the pH-insensitive component of the NO3- uniport.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

M J Selwyn, and L T Ng, and H L Choo
April 1996, Journal of bioenergetics and biomembranes,
M J Selwyn, and L T Ng, and H L Choo
August 1988, FEBS letters,
M J Selwyn, and L T Ng, and H L Choo
April 2011, The Journal of biological chemistry,
M J Selwyn, and L T Ng, and H L Choo
February 1991, The Journal of biological chemistry,
M J Selwyn, and L T Ng, and H L Choo
September 1991, The Journal of biological chemistry,
M J Selwyn, and L T Ng, and H L Choo
February 1979, Biochemical Society transactions,
M J Selwyn, and L T Ng, and H L Choo
November 1987, The Journal of biological chemistry,
M J Selwyn, and L T Ng, and H L Choo
October 1989, The Journal of biological chemistry,
M J Selwyn, and L T Ng, and H L Choo
November 1989, European journal of biochemistry,
M J Selwyn, and L T Ng, and H L Choo
September 1990, Molecular pharmacology,
Copied contents to your clipboard!