The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. 1989

V Petronilli, and I Szabò, and M Zoratti
Centro C.N.R. per la Fisiologia dei Mitocondri, Dipartimento di Biologia, Padova, Italy.

Patch-clamp experiments were performed on rat liver mitochondria inner membranes. Application of voltage gradients of either polarity revealed the presence of several different conductances, ranging up to 1.3 nS in symmetrical 150 mM KCl. Evidence is presented that at least those higher than 0.3 nS are substates of the highest conductance channel. Increasing matrix-side-positive (unphysiological) transmembrane voltage gradients favored the switch of the 1.3 nS channel to operation in lower conductance states. The size of these conductances, the presence of substates and the channel behavior are strongly reminiscent on one hand of the observations on the membrane of protoplasts from the gram-positive bacterium Streptococcus faecalis, [Zoratti, M. and Petronilli, V. (1988) FEBS Lett. 240, 105-109], and on the other of some properties of previously described channels of mitochondrial origin.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

V Petronilli, and I Szabò, and M Zoratti
August 1990, FEBS letters,
V Petronilli, and I Szabò, and M Zoratti
January 2021, Methods in molecular biology (Clifton, N.J.),
V Petronilli, and I Szabò, and M Zoratti
May 2009, Biochimica et biophysica acta,
V Petronilli, and I Szabò, and M Zoratti
February 1993, Proceedings of the National Academy of Sciences of the United States of America,
V Petronilli, and I Szabò, and M Zoratti
January 2020, Frontiers in cell and developmental biology,
V Petronilli, and I Szabò, and M Zoratti
February 1979, Biochemical Society transactions,
V Petronilli, and I Szabò, and M Zoratti
August 1988, FEBS letters,
V Petronilli, and I Szabò, and M Zoratti
January 1996, Society of General Physiologists series,
V Petronilli, and I Szabò, and M Zoratti
January 1981, Duodecim; laaketieteellinen aikakauskirja,
Copied contents to your clipboard!