Effects of tin and lead on organ levels of essential minerals in rabbits. 1989

G Zareba, and J Chmielnicka
Department of Toxicological Chemistry, Medical Academy of Lódź, Poland.

The effect of tin and lead on levels of essential metals (Zn, Cu, Ca, Fe) in rabbit tissues was compared in relation to the route of administration. Animals received intraperitoneally, or per os, SnCl2 (2 mg Sn/kg) or Pb(CH3COO)2 (3.5 mg Pb/kg) every day for 5 d or for 1 mo. Copper, zinc, iron, and calcium were determined by AAS in the liver, kidneys, spleen, brain, bone marrow, and blood; lead and tin concentration were measured in the blood of animals. Tin and lead administered per os caused either no changes or the decreased concentration of endogenous metals in several tissues. The other route of administration (ip) of both metals generally contributed to the increased storage of essential elements. Blood tin levels of tin treated animals were only about less than or equal to 1/10 of blood lead concentrations of rabbits exposed to lead.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008297 Male Males
D008903 Minerals Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Mineral
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014001 Tin A trace element that is required in bone formation. It has the atomic symbol Sn, atomic number 50, and atomic weight 118.71. Stannum
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

G Zareba, and J Chmielnicka
January 2023, Biological trace element research,
G Zareba, and J Chmielnicka
January 2004, Biological trace element research,
G Zareba, and J Chmielnicka
November 1979, British journal of industrial medicine,
G Zareba, and J Chmielnicka
January 2023, Biological trace element research,
G Zareba, and J Chmielnicka
March 1991, The Veterinary clinics of North America. Food animal practice,
G Zareba, and J Chmielnicka
August 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
G Zareba, and J Chmielnicka
June 2018, Environmental pollution (Barking, Essex : 1987),
Copied contents to your clipboard!