Cytokine detection by flow cytometry. 2014

Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Analysis of intracellular cytokines is extremely important in the clinical treatment of numerous diseases. Flow cytometry (FCM) is a highly effective technique that detects intracellular cytokines using specific fluorescence-labeled antibodies. The common steps of this assay include cell collection, fixation, permeabilization, blocking, intracellular staining and analysis by FCM. This technique also allows for analyzing the biological function of cytokines. In this chapter, we describe a modified method to detect the specific intracellular cytokine staining using FCM, with an emphasis on the effects of variables including samples, temperature, buffers, data acquisition, and analysis.

UI MeSH Term Description Entries
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D061209 Proton Ionophores Chemical agents that increase the permeability of CELL MEMBRANES to PROTONS. Ionophores, Proton
D020168 ATP Binding Cassette Transporter, Subfamily B, Member 1 A 170-kDa transmembrane glycoprotein from the superfamily of ATP-BINDING CASSETTE TRANSPORTERS. It serves as an ATP-dependent efflux pump for a variety of chemicals, including many ANTINEOPLASTIC AGENTS. Overexpression of this glycoprotein is associated with multidrug resistance (see DRUG RESISTANCE, MULTIPLE). ATP-Dependent Translocase ABCB1,MDR1 Protein,MDR1B Protein,Multidrug Resistance Protein 1,P-Glycoprotein,P-Glycoprotein 1,ABCB1 Protein,ATP Binding Cassette Transporter, Sub-Family B, Member 1,ATP-Binding Cassette, Sub-Family B, Member 1,CD243 Antigen,PGY-1 Protein,1, P-Glycoprotein,ABCB1, ATP-Dependent Translocase,ATP Dependent Translocase ABCB1,Antigen, CD243,P Glycoprotein,P Glycoprotein 1,PGY 1 Protein,Protein, MDR1B,Translocase ABCB1, ATP-Dependent

Related Publications

Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
May 2001, Current protocols in immunology,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
August 1992, Immunobiology,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
January 2004, Methods in molecular biology (Clifton, N.J.),
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
October 1998, Cytometry,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
January 2008, Clinical chemistry and laboratory medicine,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
May 2013, Methods (San Diego, Calif.),
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
May 2013, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
December 1995, Journal of immunological methods,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
January 2000, Methods in molecular medicine,
Jian-Ge Qiu, and Xiao-Long Mei, and Zhe-Sheng Chen, and Zhi Shi
October 2007, Journal of immunological methods,
Copied contents to your clipboard!