Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. 1989

A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
Department of Molecular Biology Genentech, Inc., South San Francisco, California 94080.

The number of G proteins identified by molecular cloning exceeds the number of known G protein functions. Here we show that a cell can possess multiple G proteins that carry out a similar function, the activation of phospholipase C, but couple selectively to different receptors, which are endogenous to the cell or introduced by DNA transfection. These G proteins (termed Gp) can be distinguished by their sensitivity to pertussis toxin. The assignment of a given Gp pathway to specific receptors is confirmed by the additivity relationships of the PI hydrolysis response mediated by the different receptors. Significantly different amounts of PI hydrolysis are activated through each Gp pathway, suggesting that Gp proteins also differ in their coupling to phospholipase C. These results indicate that distinct Gp pathways in a given cell exist to couple different receptors to PI hydrolysis selectively, and may specify the nature of the cellular response to different receptors by determining the magnitude of PI hydrolysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
March 1988, FEBS letters,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
May 1994, Molecular pharmacology,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
April 2001, Proceedings of the National Academy of Sciences of the United States of America,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
July 1991, The American journal of physiology,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
August 1995, Brain research,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
October 2007, Journal of immunology (Baltimore, Md. : 1950),
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
July 1997, The Journal of physiology,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
September 2000, Molecular and cellular biology,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
September 1997, Nature,
A Ashkenazi, and E G Peralta, and J W Winslow, and J Ramachandran, and D J Capon
October 1990, FEBS letters,
Copied contents to your clipboard!