Regulatory seryl-phosphorylation of C4 phosphoenolpyruvate carboxylase by a soluble protein kinase from maize leaves. 1989

J A Jiao, and R Chollet
Department of Biochemistry, University of Nebraska-Lincoln 68583-0718.

A reconstituted system composed of purified phosphoenolpyruvate carboxylase (PEP-Case) and a soluble protein kinase (PK) from green maize leaves was developed to critically assess the effects of in vitro protein phosphorylation on the catalytic and regulatory (malate sensitivity) properties of the target enzyme. The PK was partially purified from light-adapted leaf tissue by ammonium sulfate fractionation (0-60% saturation fraction) of a crude extract and blue dextran-agarose affinity chromatography. The resulting preparation was free of PEPCase. This partially purified protein kinase activated PEPCase from dark-adapted green maize leaves in an ATP-, Mg2+-, time-, and temperature-dependent fashion. Concomitant with these changes in PEPCase activity was a marked decrease in the target enzyme's sensitivity to feedback inhibition by L-malate. The PK-mediated incorporation of 32P from [gamma-32P]ATP into the protein substrate was directly correlated with these changes in PEPCase activity and malate sensitivity. The maximal molar 32P-incorporation value was about 0.25 per 100-kDa PEPCase subunit (i.e., 1 per holoenzyme). Phosphoamino acid analysis of the 32P-labeled target enzyme by two-dimensional thin-layer electrophoresis revealed the exclusive presence of phosphoserine. These in vitro results, together with our recent studies on the light-induced changes in phosphorylation status of green maize leaf PEPCase in vivo (J. A. Jiao and R. Chollet (1988) Arch. Biochem. Biophys. 261, 409-417), collectively provide the first unequivocal evidence that the seryl-phosphorylation of the dark-form enzyme by a soluble protein kinase is responsible for the changes in catalytic activity and malate sensitivity of C4 PEPCase observed in vivo during dark/light transitions of the parent leaf tissue.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010730 Phosphoenolpyruvate Carboxylase An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC 4.1.1.31. Carboxylase, Phosphoenolpyruvate
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine

Related Publications

J A Jiao, and R Chollet
November 1971, The Biochemical journal,
J A Jiao, and R Chollet
January 1991, Biochemistry international,
J A Jiao, and R Chollet
February 1986, Archives of biochemistry and biophysics,
Copied contents to your clipboard!