Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate. 1986

D H Gonzalez, and A A Iglesias, and C S Andreo

Bromopyruvate is a competitive inhibitor of maize leaf phosphoenolpyruvate carboxylase with respect to phosphoenolpyruvate (Ki: 2.3 mM at pH 8). Relatively low concentrations of this compound completely and irreversibly inactivated the enzyme. The inactivation followed pseudo-first-order kinetics. The haloacid combines first with the carboxylase to give a reversible enzyme-bromopyruvate complex and then alkylates the enzyme. The maximum inactivation rate constant was 0.27 min-1 at pH 7.2 and 30 degrees C and the concentration of bromopyruvate giving half-maximum rate of inactivation was 1.8 mM. The inactivation was prevented by the substrate phosphoenolpyruvate, in the absence or presence of MgCl2, and by the competitive inhibitor P-glycolate. Malate afforded protection at pH 7 but not at pH 8. MgCl2 enhanced the inactivation when it was carried out at pH 7; its effect was mainly due to a decrease in the dissociation constant of the complex between bromopyruvate and the enzyme from 2 to 1.4 mM. This behavior was not observed at pH 8. Analysis of the inactivation at different pH suggests that a group of pKa near 7.5 is important for the binding of the reagent to the carboxylase. Determination of the number of sulfhydryl groups of the native and modified enzyme with [3H]-N-ethylmaleimide suggests that the inactivation correlates with the modification of thiol groups in the enzyme. The substrate prevented the modification of these groups. The results suggest that the alkylating reagent modifies cysteinyl residues at the phosphoenolpyruvate binding site of the carboxylase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010730 Phosphoenolpyruvate Carboxylase An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC 4.1.1.31. Carboxylase, Phosphoenolpyruvate
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

D H Gonzalez, and A A Iglesias, and C S Andreo
November 1971, The Biochemical journal,
D H Gonzalez, and A A Iglesias, and C S Andreo
December 1982, The Journal of biological chemistry,
D H Gonzalez, and A A Iglesias, and C S Andreo
January 1987, Photosynthesis research,
D H Gonzalez, and A A Iglesias, and C S Andreo
June 1976, Plant physiology,
D H Gonzalez, and A A Iglesias, and C S Andreo
January 1991, Biochemistry international,
D H Gonzalez, and A A Iglesias, and C S Andreo
May 1987, Plant physiology,
D H Gonzalez, and A A Iglesias, and C S Andreo
August 1990, Photosynthesis research,
D H Gonzalez, and A A Iglesias, and C S Andreo
March 1985, Journal of biochemistry,
D H Gonzalez, and A A Iglesias, and C S Andreo
December 1990, Biochimica et biophysica acta,
D H Gonzalez, and A A Iglesias, and C S Andreo
March 1989, Archives of biochemistry and biophysics,
Copied contents to your clipboard!