Unification theory of optimal life histories and linear demographic models in internal stochasticity. 2014

Ryo Oizumi
Graduate School of Mathematical Science, University of Tokyo, Tokyo, Japan.

Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

UI MeSH Term Description Entries
D008018 Life Cycle Stages The continuous sequence of changes undergone by living organisms during the post-embryonic developmental process, such as metamorphosis in insects and amphibians. This includes the developmental stages of apicomplexans such as the malarial parasite, PLASMODIUM FALCIPARUM. Life Cycle,Life History Stages,Cycle, Life,Cycles, Life,History Stage, Life,History Stages, Life,Life Cycle Stage,Life Cycles,Life History Stage,Stage, Life Cycle,Stage, Life History,Stages, Life Cycle,Stages, Life History
D011157 Population Dynamics The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population. Malthusianism,Neomalthusianism,Demographic Aging,Demographic Transition,Optimum Population,Population Decrease,Population Pressure,Population Replacement,Population Theory,Residential Mobility,Rural-Urban Migration,Stable Population,Stationary Population,Aging, Demographic,Decrease, Population,Decreases, Population,Demographic Transitions,Dynamics, Population,Migration, Rural-Urban,Migrations, Rural-Urban,Mobilities, Residential,Mobility, Residential,Optimum Populations,Population Decreases,Population Pressures,Population Replacements,Population Theories,Population, Optimum,Population, Stable,Population, Stationary,Populations, Optimum,Populations, Stable,Populations, Stationary,Pressure, Population,Pressures, Population,Replacement, Population,Replacements, Population,Residential Mobilities,Rural Urban Migration,Rural-Urban Migrations,Stable Populations,Stationary Populations,Theories, Population,Theory, Population,Transition, Demographic,Transitions, Demographic
D003710 Demography Statistical interpretation and description of a population with reference to distribution, composition, or structure. Demographer,Demographic,Demographic and Health Survey,Population Distribution,Accounting, Demographic,Analyses, Demographic,Analyses, Multiregional,Analysis, Period,Brass Technic,Brass Technique,Demographers,Demographic Accounting,Demographic Analysis,Demographic Factor,Demographic Factors,Demographic Impact,Demographic Impacts,Demographic Survey,Demographic Surveys,Demographic and Health Surveys,Demographics,Demography, Historical,Demography, Prehistoric,Factor, Demographic,Factors, Demographic,Family Reconstitution,Historical Demography,Impact, Demographic,Impacts, Demographic,Multiregional Analysis,Period Analysis,Population Spatial Distribution,Prehistoric Demography,Reverse Survival Method,Stable Population Method,Survey, Demographic,Surveys, Demographic,Analyses, Period,Analysis, Demographic,Analysis, Multiregional,Demographic Analyses,Demographies, Historical,Demographies, Prehistoric,Distribution, Population,Distribution, Population Spatial,Distributions, Population,Distributions, Population Spatial,Family Reconstitutions,Historical Demographies,Method, Reverse Survival,Method, Stable Population,Methods, Reverse Survival,Methods, Stable Population,Multiregional Analyses,Period Analyses,Population Distributions,Population Methods, Stable,Population Spatial Distributions,Prehistoric Demographies,Reconstitution, Family,Reconstitutions, Family,Reverse Survival Methods,Spatial Distribution, Population,Spatial Distributions, Population,Stable Population Methods,Technic, Brass,Technique, Brass
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear
D017753 Ecosystem A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Ecosystems,Biome,Ecologic System,Ecologic Systems,Ecological System,Habitat,Niche, Ecological,System, Ecological,Systems, Ecological,Biomes,Ecological Niche,Ecological Systems,Habitats,System, Ecologic,Systems, Ecologic

Related Publications

Ryo Oizumi
September 2007, Journal of the Optical Society of America. A, Optics, image science, and vision,
Ryo Oizumi
June 1980, Proceedings of the National Academy of Sciences of the United States of America,
Ryo Oizumi
January 1991, Journal of theoretical biology,
Copied contents to your clipboard!