Transposon mutagenesis of the extremely thermophilic bacterium Thermus thermophilus HB27. 2015

Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA, jennifer_carr@brown.edu.

Thermus thermophilus is an extremely thermophilic bacterium that grows between 50 and 80 °C and is an excellent model organism not only for understanding life at high temperature but also for its biotechnological and industrial applications. Multiple molecular capabilities are available including targeted gene inactivation and the use of shuttle plasmids that replicate in T. thermophilus and Escherichia coli; however, the ability to disrupt gene function randomly by transposon insertion has not been developed. Here we report a detailed method of transposon mutagenesis of T. thermophilus HB27 based on the EZ-Tn5 system from Epicentre Biotechnologies. We were able to generate insertion mutations throughout the chromosome by in vitro transposition and transformation with mutagenized genomic DNA. We also report that an additional step, one that fills in single stranded gaps in donor DNA generated by the transposition reaction, was essential for successful mutagenesis. We anticipate that our method of transposon mutagenesis will enable further genetic development of T. thermophilus and may also be valuable for similar endeavors with other under-developed organisms.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
September 1993, FEBS letters,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
October 1997, Journal of bacteriology,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
September 2006, The FEBS journal,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
November 1998, Applied and environmental microbiology,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
March 2002, Bioscience, biotechnology, and biochemistry,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
January 2018, Beilstein journal of organic chemistry,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
January 1993, Journal of bacteriology,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
July 2004, Microbiology (Reading, England),
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
December 2003, Journal of biochemistry,
Jennifer F Carr, and Steven T Gregory, and Albert E Dahlberg
December 1993, Journal of biochemistry,
Copied contents to your clipboard!