| D008970 |
Molecular Weight |
The sum of the weight of all the atoms in a molecule. |
Molecular Weights,Weight, Molecular,Weights, Molecular |
|
| D009693 |
Nucleic Acid Hybridization |
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) |
Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations |
|
| D003001 |
Cloning, Molecular |
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. |
Molecular Cloning |
|
| D004269 |
DNA, Bacterial |
Deoxyribonucleic acid that makes up the genetic material of bacteria. |
Bacterial DNA |
|
| D005798 |
Genes, Bacterial |
The functional hereditary units of BACTERIA. |
Bacterial Gene,Bacterial Genes,Gene, Bacterial |
|
| D005810 |
Multigene Family |
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) |
Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes |
|
| D015183 |
Restriction Mapping |
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. |
Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction |
|
| D015252 |
Deoxyribonucleases, Type II Site-Specific |
Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. |
DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II |
|
| D016521 |
Electrophoresis, Gel, Pulsed-Field |
Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. |
Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis |
|
| D016680 |
Genome, Bacterial |
The genetic complement of a BACTERIA as represented in its DNA. |
Bacterial Genome,Bacterial Genomes,Genomes, Bacterial |
|