Production of 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine from 2',3'-dideoxyuridine and the corresponding purine bases by resting cells of Escherichia coli AJ 2595. 1989

H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
Central Research Laboratories, Ajinomoto Co., Inc., Kawasaki, Japan.

A novel microbial method for the production of 2',3'-dideoxynucleosides by transdideoxyribosylation has been developed. By screening microorganisms producing 2',3'-dideoxyadenosine (DDA) from 2',3'-dideoxyuridine (DDU) and adenine, Escherichia coli AJ 2595 was selected as the best producer. Optimal pH and temperature for the DDA-producing reaction were ca. 6.5 and 50 degrees C, respectively. Pi seemed to be an essential factor for the reaction, and its optimal concentration was ca. 25 mM. Moreover, polyethylene glycol had a notable effect on DDA production. Under the best conditions established, 52 mM DDA was obtained from 100 mM DDU and 100 mM adenine after 48 h of incubation from resting cells of E. coli AJ 2595. This strain could also produce 2',3'-dideoxynucleosides, such as 2',3'-dideoxyinosine (DDI), 2',3'-dideoxyguanosine, and 2',3'-dideoxythymidine, from DDU and the corresponding bases. In particular, this strain could produce DDI in high yield (ca. 32 mM from 100 mM DDU and 100 mM hypoxanthine) after 24 h of incubation. However, 2',3'-dideoxycytidine was not produced from DDU and cytosine by resting cells of E. coli AJ 2595.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015224 Dideoxynucleosides Nucleosides that have two hydroxy groups removed from the sugar moiety. The majority of these compounds have broad-spectrum antiretroviral activity due to their action as antimetabolites. The nucleosides are phosphorylated intracellularly to their 5'-triphosphates and act as chain-terminating inhibitors of viral reverse transcription. 2',3'-Dideoxynucleosides,Dideoxyribonucleosides,ddNus,2',3' Dideoxynucleosides
D016048 Dideoxyadenosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is an inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal side effect is nephrotoxicity. In vivo, dideoxyadenosine is rapidly metabolized to DIDANOSINE (ddI) by enzymatic deamination; ddI is then converted to dideoxyinosine monophosphate and ultimately to dideoxyadenosine triphosphate, the putative active metabolite. 2',3'-Dideoxyadenosine,ddA (Antiviral),2',3' Dideoxyadenosine
D016049 Didanosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. 2',3'-Dideoxyinosine,Dideoxyinosine,ddI (Antiviral),NSC-612049,Videx,2',3' Dideoxyinosine,NSC 612049,NSC612049

Related Publications

H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
July 1989, Investigational new drugs,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
January 1998, Nucleosides & nucleotides,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
August 1970, Journal of bacteriology,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
January 1966, Biochemistry,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
September 1988, Journal of chromatography,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
May 1989, Biochemical pharmacology,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
May 1990, Clinical pharmacology and therapeutics,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
August 1992, Chemical & pharmaceutical bulletin,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
July 1991, Molecular pharmacology,
H Shirae, and K Kobayashi, and H Shiragami, and Y Irie, and N Yasuda, and K Yokozeki
July 2000, Journal of bacteriology,
Copied contents to your clipboard!