32P-postlabeling analysis of benzo[a]pyrene-DNA adducts formed in vitro and in vivo. 1989

W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143.

Benzo[a]pyrene (BP) was bound to DNA by horseradish peroxidase, rat liver microsomes, and rat liver nuclei in vitro and in mouse skin in vivo. The BP-DNA adducts formed were analyzed by the 32P-postlabeling technique. Activation by microsomes and nuclei resulted in the detection of five adducts, including a major adduct (55%) which cochromatographed with the adduct (+/-)-10 beta-deoxyguanosin-N2-yl-7 beta, 8 alpha, 9 alpha-trihydroxy-7,8,9,10-tetrahydro-BP (BPDE-N2dG) formed by reaction of (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE) with DNA or by microsomal activation of BP 7,8-dihydrodiol. Activation by horseradish peroxidase, which catalyzes one-electron oxidation, produced seven adducts, including a major one (30%) that coeluted with an adduct observed with microsomal (2%) and nuclear (14%) activation. The pattern of adducts formed in mouse skin treated with BP in vivo for 4 or 24 h contained four of the same adducts observed with nuclei or microsomes in vitro, and the predominant adduct detected (86%) was BPDE-N2dG. The adduct common to horseradish peroxidase, microsomes, and nuclei was also detected in mouse skin DNA (2%). These results demonstrate that multiple BP-DNA adducts are formed in these in vitro and in vivo systems and suggest that at least one adduct is formed in common in all of the systems. Thus, it appears that stable BP adducts can be formed in mouse skin DNA by both monooxygenation and one-electron oxidation.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001564 Benzo(a)pyrene A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. 3,4-Benzopyrene,3,4-Benzpyrene,3,4 Benzopyrene,3,4 Benzpyrene

Related Publications

W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
January 1993, Chemical research in toxicology,
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
January 1992, Chemical research in toxicology,
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
November 1989, Cancer letters,
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
January 2020, Methods in molecular biology (Clifton, N.J.),
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
January 2005, Methods in molecular biology (Clifton, N.J.),
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
May 2010, Environmental and molecular mutagenesis,
W J Bodell, and P D Devanesan, and E G Rogan, and E L Cavalieri
April 1997, Chemico-biological interactions,
Copied contents to your clipboard!