Polyclonal B-cell activation in periodontitis. 1989

J Tew, and D Engel, and D Mangan

The evidence that periodontitis-associated bacteria contain potent PBA factors is very strong. Clearly, antibodies directed against non-oral antigens are produced in the inflamed periodontal lesion, and PBA appears to contribute to that production. It is also clear that B cells and plasma cells are the major cell types in the periodontal lesion. Furthermore, alterations in the regulation of B-cell responses to PBA factors are associated with severe periodontal disease. However, evidence demonstrating that activated B cells and plasma cells are directly involved in the pathogenic mechanisms leading to destruction of the periodontal support is still circumstantial. Polyclonal B-cell activation and potential pathways by which PBA-stimulated cells could be involved in periodontal destruction remain largely hypothetical. It appears that IL-1 is an important osteoclast-activating agent, and that LPS, which is a potent PBA factor in many systems, can elicit IL-1 production by B cells as well as by the monocyte/macrophage lineage. Recent data indicating that IL-1 is produced by numerous malignant B-cell lines lend support for the idea that B-cell IL-1 could be important in bone resorption. It is also likely that polyclonal activation may lead to production of autoantibody such as anti-type I and anti-type III collagens, and the destruction of self tissues through ADCC reactions, immune complex formation, and complement activation. Further research is needed to determine how the B cell/plasma cell may participate in tissue injury in periodontitis, and how the B-cell response to PBA factors is regulated.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010518 Periodontitis Inflammation and loss of connective tissues supporting or surrounding the teeth. This may involve any part of the PERIODONTIUM. Periodontitis is currently classified by disease progression (CHRONIC PERIODONTITIS; AGGRESSIVE PERIODONTITIS) instead of age of onset. (From 1999 International Workshop for a Classification of Periodontal Diseases and Conditions, American Academy of Periodontology) Pericementitis,Pericementitides,Periodontitides
D010950 Plasma Cells Specialized forms of antibody-producing B-LYMPHOCYTES. They synthesize and secrete immunoglobulin. They are found only in lymphoid organs and at sites of immune responses and normally do not circulate in the blood or lymph. (Rosen et al., Dictionary of Immunology, 1989, p169 & Abbas et al., Cellular and Molecular Immunology, 2d ed, p20) Plasmacytes,Cell, Plasma,Cells, Plasma,Plasma Cell,Plasmacyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D018407 Bacterial Physiological Phenomena Physiological processes and properties of BACTERIA. Bacterial Physiology,Bacterial Processes,Bacterial Physiological Concepts,Bacterial Physiological Phenomenon,Bacterial Process,Physiology, Bacterial,Bacterial Physiological Concept,Concept, Bacterial Physiological,Concepts, Bacterial Physiological,Phenomena, Bacterial Physiological,Phenomenon, Bacterial Physiological,Process, Bacterial,Processes, Bacterial

Related Publications

J Tew, and D Engel, and D Mangan
September 1983, [Rinsho ketsueki] The Japanese journal of clinical hematology,
J Tew, and D Engel, and D Mangan
June 1990, Annals of the rheumatic diseases,
J Tew, and D Engel, and D Mangan
February 1992, Lupus,
J Tew, and D Engel, and D Mangan
December 1995, International journal of hematology,
J Tew, and D Engel, and D Mangan
April 1978, Clinical and experimental immunology,
J Tew, and D Engel, and D Mangan
October 2003, Nature immunology,
J Tew, and D Engel, and D Mangan
January 2015, PloS one,
J Tew, and D Engel, and D Mangan
September 1985, Clinical immunology and immunopathology,
J Tew, and D Engel, and D Mangan
October 1977, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!