Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. 1989

Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
Department of Microbiology-Immunology, Northwestern University Medical-Dental Schools, Chicago, Illinois 60611.

The Streptococcus mutans GS-5 scrA gene coding for enzyme IIScr of the phosphoenolpyruvate-dependent sucrose phosphotransferase system (PTS) was localized upstream from the scrB gene coding for sucrose-6-phosphate hydrolase activity after Mu dE transposon mutagenesis of plasmid pMH613. The cloned scrA gene product was identified as a 68-kilodalton protein by minicell analysis after isolation of the gene in plasmid pD4. In addition, the membrane fraction from Escherichia coli cells containing pD4 exhibited sucrose PTS activity upon complementation with enzyme I and HPr from strain GS-5. The nucleotide sequence of the scrA region revealed that this gene was located immediately upstream from the scrB gene and divergently transcribed from the opposite DNA strand. The scrA gene was preceded by potential Shine-Dalgarno and promoterlike sequences and was followed by a transcription terminator-like sequence. The scrA gene coded for an enzyme IIScr protein of 664 amino acid residues with a calculated molecular weight of 69,983. This enzyme IIScr protein was larger than the comparable proteins from Bacillus subtilis and E. coli containing sucrose-metabolizing plasmid pUR400. The 491-amino-acid N-terminal sequence of the S. mutans enzyme IIScr was homologous with the B. subtilis and E. coli sequences, and the 173-amino-acid C-terminal sequence of the S. mutans protein was also homologous with the Salmonella typhimurium enzyme IIIGlc and the 162-amino-acid C terminus of E. coli enzyme IIBgl. These results suggest that the sucrose PTS system of S. mutans is enzyme III independent.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
June 1979, Infection and immunity,
Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
June 1979, Infection and immunity,
Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
November 1979, Infection and immunity,
Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
October 1993, Molecular & general genetics : MGG,
Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
April 2007, Journal of bacteriology,
Y Sato, and F Poy, and G R Jacobson, and H K Kuramitsu
May 1984, Infection and immunity,
Copied contents to your clipboard!