Antibodies to CD4 in individuals infected with human immunodeficiency virus type 1. 1989

M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, MA 02115.

The attachment of human immunodeficiency virus type 1 (HIV-1) to target cells is mediated by a specific interaction between the viral envelope glycoprotein (gp120) and the CD4 receptor. Here we report that approximately 10% of HIV-1-infected individuals produce antibodies that recognize the extracellular portion of the CD4 molecule. Carboxyl-terminal deletions of CD4 that do not affect HIV-1 gp120 binding eliminate recognition of CD4 by patient antisera. In contrast, mutations in the amino-terminal domain of CD4 that attenuate HIV-1 gp120 binding do not diminish CD4 recognition by patient antisera. These results suggest that HIV-1 infection can generate antibodies directed against a region of the viral receptor distinct from the virus-binding domain.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006679 HIV Seropositivity Development of neutralizing antibodies in individuals who have been exposed to the human immunodeficiency virus (HIV/HTLV-III/LAV). AIDS Seroconversion,AIDS Seropositivity,Anti-HIV Positivity,HIV Antibody Positivity,HIV Seroconversion,HTLV-III Seroconversion,HTLV-III Seropositivity,AIDS Seroconversions,AIDS Seropositivities,Anti HIV Positivity,Anti-HIV Positivities,Antibody Positivities, HIV,Antibody Positivity, HIV,HIV Antibody Positivities,HIV Seroconversions,HIV Seropositivities,HTLV III Seroconversion,HTLV III Seropositivity,HTLV-III Seroconversions,HTLV-III Seropositivities,Positivities, Anti-HIV,Positivities, HIV Antibody,Positivity, Anti-HIV,Positivity, HIV Antibody,Seroconversion, AIDS,Seroconversion, HIV,Seroconversion, HTLV-III,Seroconversions, AIDS,Seroconversions, HIV,Seroconversions, HTLV-III,Seropositivities, AIDS,Seropositivities, HIV,Seropositivities, HTLV-III,Seropositivity, AIDS,Seropositivity, HIV,Seropositivity, HTLV-III
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
January 1990, Disease markers,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
June 1991, Clinical immunology and immunopathology,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
August 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
March 1993, Medicina clinica,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
March 1993, Medicina clinica,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
August 1999, Journal of virology,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
October 2004, Journal of virology,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
November 1999, Journal of virology,
M Kowalski, and B Ardman, and L Basiripour, and Y C Lu, and D Blohm, and W Haseltine, and J Sodroski
October 1988, AIDS (London, England),
Copied contents to your clipboard!