Simian hemorrhagic fever virus: Recent advances. 2015

Margo A Brinton, and Han Di, and Heather A Vatter
Georgia State University, Atlanta, GA, USA. Electronic address: mbrinton@gsu.edu.

The simian hemorrhagic fever virus (SHFV) genome differs from those of other members of the family Arteriviridae in encoding three papain-like one proteases (PLP1α, PLP1β and PLP1γ) at the 5' end and two adjacent sets of four minor structural proteins at the 3' end. The catalytic Cys and His residues and cleavage sites for each of the SHFV PLP1s were predicted and their functionality was tested in in vitro transcription/translation reactions done with wildtype or mutant polyprotein constructs. Mass spectrometry analyses of selected autoproteolytic products confirmed cleavage site locations. The catalytic Cys of PLP1α is unusual in being adjacent to an Ala instead of a Typ. PLP1γ cleaves at both downstream and upstream sites. Intermediate precursor and alternative cleavage products were detected in the in vitro transcription/translation reactions but only the three mature nsp1 proteins were detected in SHFV-infected MA104 cell lysates with SHFV nsp1 protein-specific antibodies. The duplicated sets of SHFV minor structural proteins were predicted to be functionally redundant. A stable, full-length, infectious SHFV-LVR cDNA clone was constructed and a set of mutant infectious clones was generated each with the start codon of one of the minor structural proteins mutated. All eight of the minor structural proteins were found to be required for production of infectious extracellular virus. SHFV causes a fatal hemorrhagic fever in macaques but asymptomatic, persistent infections in natural hosts such as baboons. SHFV infections were compared in macrophages and myeloid dendritic cells from baboons and macaques. Virus yields were higher from macaque cells than from baboon cells. Macrophage cultures from the two types of animals differed dramatically in the percentage of cells infected. In contrast, similar percentages of myeloid dendritic cells were infected but virus replication was efficient in the macaque cells but inefficient in the baboon cells. SHFV infection induced the production of pro-inflammatory cytokines, including IL-1β, IL-6, IL-12/23(p40), TNF-α and MIP-1α, in macaque cells but not baboon cells.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010206 Papain A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC 3.4.22.2. Tromasin
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D000086882 Coronavirus Papain-Like Proteases Papain-like proteases that occur in species of CORONAVIRIDAE. Some species have more than one papain-like protease gene. PLP-1 Protein, Coronavirus,PLP-2 Protein, Coronavirus,PLP-3 Protein, Coronavirus,Papain-Like Protease, Coronavirus,Papain-Like Proteinase 1, Coronavirus,Papain-Like Proteinase 2, Coronavirus,Papain-Like Proteinase 3, Coronavirus,Coronavirus PLP-1 Protein,Coronavirus PLP-2 Protein,Coronavirus PLP-3 Protein,Coronavirus Papain Like Proteases,PLP 1 Protein, Coronavirus,PLP 2 Protein, Coronavirus,PLP 3 Protein, Coronavirus,Papain Like Protease, Coronavirus,Papain Like Proteinase 1, Coronavirus,Papain Like Proteinase 2, Coronavirus,Papain Like Proteinase 3, Coronavirus,Papain-Like Proteases, Coronavirus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

Margo A Brinton, and Han Di, and Heather A Vatter
January 2018, F1000Research,
Margo A Brinton, and Han Di, and Heather A Vatter
January 1984, Archives of virology,
Margo A Brinton, and Han Di, and Heather A Vatter
December 1975, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Margo A Brinton, and Han Di, and Heather A Vatter
January 1984, Archives of virology,
Margo A Brinton, and Han Di, and Heather A Vatter
January 1969, Voprosy virusologii,
Margo A Brinton, and Han Di, and Heather A Vatter
August 2022, Microbial pathogenesis,
Margo A Brinton, and Han Di, and Heather A Vatter
January 1986, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Margo A Brinton, and Han Di, and Heather A Vatter
March 2015, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology,
Margo A Brinton, and Han Di, and Heather A Vatter
January 1990, Journal of medical primatology,
Margo A Brinton, and Han Di, and Heather A Vatter
December 1980, Laboratory animal science,
Copied contents to your clipboard!