Role of phosphatidylinositol in cardiac sarcolemmal membrane sodium-calcium exchange. 1989

G N Pierce, and V Panagia
Division of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Canada.

The purpose of this investigation was to study the effects of a distinct type of phospholipase C on sarcolemmal Na+-Ca2+ exchange. With this phospholipase C (Staphylococcus aureus), treatment of cardiac sarcolemmal vesicles resulted in a specific hydrolysis of membrane phosphatidylinositol. This hydrolysis of phosphatidylinositol also released two proteins (110 and 36 kDa) from the sarcolemmal membrane. Phospholipase C pretreatment of the sarcolemma resulted in an unexpected stimulation of Na+-Ca2+ exchange. The Vmax of Na+-Ca2+ exchange was increased but the Km for Ca2+ was not altered. This stimulation was specific to the Na+-Ca2+ exchange pathway. ATP-dependent Ca2+ uptake was depressed after phospholipase C treatment, but passive membrane permeability to Ca2+ was unaffected. Sarcolemmal Na+,K+-ATPase activity was not altered, whereas passive Ca2+ binding was modestly decreased after phospholipase C pretreatment. The stimulation of Na+-Ca2+ exchange after phosphatidylinositol hydrolysis was greater in inside-out vesicles than in a total population of vesicles of mixed orientation. This finding suggests that the cardiac sarcolemmal Na+-Ca2+ exchanger is functionally asymmetrical. The results also suggest that membrane phosphatidylinositol is inhibitory to the Na+-Ca2+ exchanger or, alternatively, this phospholipid may anchor an endogenous inhibitory protein in the sarcolemmal membrane. The observation that a transsarcolemmal Ca2+ flux pathway may be stimulated solely by phosphatidylinositol hydrolysis independently of phosphoinositide metabolic products like inositol triphosphate is novel.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right

Related Publications

G N Pierce, and V Panagia
November 1989, Pflugers Archiv : European journal of physiology,
G N Pierce, and V Panagia
January 1991, Annals of the New York Academy of Sciences,
G N Pierce, and V Panagia
September 1980, Biochimica et biophysica acta,
G N Pierce, and V Panagia
August 1983, Research communications in chemical pathology and pharmacology,
G N Pierce, and V Panagia
April 1986, The Journal of biological chemistry,
G N Pierce, and V Panagia
January 1980, Annals of the New York Academy of Sciences,
G N Pierce, and V Panagia
July 1979, The Journal of biological chemistry,
G N Pierce, and V Panagia
March 1983, The Journal of biological chemistry,
Copied contents to your clipboard!